Project description:Functional structure, taxonomic composition and the dominant assembly processes of soil prokaryotic community along an altitudinal gradient
Project description:Microbial communities in the rhizosphere make significant contributions to crop health and nutrient cycling. However, their ability to perform important biogeochemical processes remains uncharacterized. Important functional genes, which characterize the rhizosphere microbial community, were identified to understand metabolic capabilities in the maize rhizosphere using GeoChip 3.0-based functional gene array method. Triplicate samples were taken for both rhizosphere and bulk soil, in which each individual sample was a pool of four plants or soil cores. To determine the abundance of functional genes in the rhizosphere and bulk soils, GeoChip 3.0 was used.
Project description:Microbial communities in the rhizosphere make significant contributions to crop health and nutrient cycling. However, their ability to perform important biogeochemical processes remains uncharacterized. Important functional genes, which characterize the rhizosphere microbial community, were identified to understand metabolic capabilities in the maize rhizosphere using GeoChip 3.0-based functional gene array method. Triplicate samples were taken for both rhizosphere and bulk soil, in which each individual sample was a pool of four plants or soil cores. To determine the abundance of functional genes in the rhizosphere and bulk soils, GeoChip 3.0 was used.
Project description:Bacterium Sphingomonas glacialis AAP5 isolated from the alpine lake Gossenköllesee contains genes for anoxygenic phototrophy as well as proton-pumping xanthorhodopsin. Here we show that AAP5 expresses xanthorhodopsin when illuminated at temperatures below 16°C. In contrast bacteriochlorophyll-containing reaction centers are expressed between 4 and 22°C in the dark. Thus, cells grown at lower temperature under natural light-dark cycle produced both photosystems. The purified xanthorhodopsin contains carotenoid nostoxanthin serving as an auxiliary antenna and performs the standard photocycle. The xanthorhodopsin-containing cells reduced upon illumination their respiration, increased their ATP synthesis and produced more biomass. This documents that the harvested light energy was utilized in the metabolism, which can represent a competitive advance under carbon-limiting conditions. The presence of Sphingomonas bacteria with dual phototrophy was verified in the metagenomes collected from lake Gossenköllesee. This unique trait may represent a metabolic advantage in alpine lakes where photoheterotrophic organisms facelimited organic substrates, low temperature, and extreme changes in irradiance.