Project description:An R.decussatus microarray platform was developed to to profile gene expression in R. decussatus heavy infected by Perkinsus olseni
Project description:An R.decussatus microarray platform was developed to to profile gene expression in R. decussatus heavy infected by Perkinsus olseni A comparative analysis of gene expression was conducted between Grooved carpet shell clam R. decussatus individuals for non infected and infected by Perkinsus olseni clam gills. Gene expression profiling was performed using an R.decussatus oligo-DNA microarray of 43,758 probes based on single-colour detection (Cyanine-3 only). Microarrays were scanned with Agilent scanner G2565BA at a resolution of 5 microns; all slides were scanned twice at two different sensitivity settings (XDRHi 100% and XDRLo 10%); the scanner software created a unique ID for each pair of XDR scans and saved it to both scan image files. Feature Extraction (FE) 9.5 used XDR ID to link the pairs of scans together automatically when extracting data. The signal left after all the FE processing steps have been completed is ProcessedSignal that contains the Multiplicatively Detrended, Background-Subtracted Signal.
Project description:Parasites of the genus Perkinsus spp. cause high mortalities and economic losses to the most noticeable bivalves produced in the worldwide aquaculture. In this study, we analyze how P. olseni influences the gene expression profiles of hemocytes from Manila clam (Venerupis philippinarum) using experimental infections along a temporal series and a Manila clam immune-enriched DNA microarray. Healthy and Perkinsus-infected clams (V. philippinarum) were obtained from Carril and Pontevedra shellfish farms, respectively (Galicia, NW Spain). The presence-absence of P. olseni was confirmed using the Ray`s fluid thioglycollate medium assay (RFTM) (Ray, 1966). Healthy clams were maintained in an open circuit filtered sea water tanks at 15°C with aeration. Natural infected animals were maintained in the same conditions using closed circuit sea water. All animals were fed daily with a mixture of microalgae containing Phaeodactylum tricornutum, Isochrysis galbana and Rhodomonas lens. Clams were acclimatized to the aquarium conditions for one week before the experiments were conducted. Perkinsus trophozoites were isolated from naturally infected animals following the protocol established by Ford et al., (2002). The concentration was adjusted to 5x104 trophozoites /ml in filtered sea water (FSW). Healthy clams (P. olseni free animals) (n=100) with a weight of 2.25 ± 0.64 g soft tissue, were notched in the shell and intramuscularly injected with 100 µl of the trophozoites suspension. Control animals (n=100) were injected with 100 µl of FSW. After infection, clams were maintained in 50 l tanks with aeration.Twenty animals from each experimental group and time point were sampled at 5, 10, 14, and 31 days post infection (pi).Hemolymph were extracted to perform microarrays experiments. In each condition hemolymph from three five individuals was pooled. Total RNA isolation was conducted following the manufacturer’s specifications. Isolated RNAs were treated with DNase I and purified again using the RNeasy Mini kit (Qiagen). A 8x15K Agilent 60-mer oligo-microarray (GPL16450) was used to compare gene expression profiles of clams after P. olseni infection with uninfected animals. The Agilent Feature Extraction Software (version 9.5.1) was used for the data extraction and background subtraction following standard procedures. The GeneSpring software (Agilent) was used to normalize and analyze the microarray fluorescence data.
Project description:Parasites of the genus Perkinsus spp. cause high mortalities and economic losses to the most noticeable bivalves produced in the worldwide aquaculture. In this study, we analyze how P. olseni influences the gene expression profiles of hemocytes from Manila clam (Venerupis philippinarum) using experimental infections along a temporal series and a Manila clam immune-enriched DNA microarray.
Project description:The Manila clam (Ruditapes philippinarum) is the bivalve species with the highest world production from both fisheries and aquaculture, but its production is seriously threatened by perkinsosis, a disease caused by the protozoan parasite Perkinsus olseni. To understand the molecular mechanisms underlying R. philippinarum–P. olseni interaction, we analyzed the gene expression profiles of in vitro challenged clam hemocytes and P. olseni trophozoites, using two oligo-microarray platforms, one previously validated for R. philippinarum hemocytes and a new one developed and validated in this study for P. olseni. Manila clam hemocytes were in vitro challenged with trophozoites, zoospores, and extracellular products from P. olseni in vitro cultures, while P. olseni trophozoites were in vitro challenged with Manila clam plasma along the same time-series (1 h, 8 h, and 24 h). The hemocytes showed a fast activation of the innate immune response, particularly associated with hemocyte recruitment, in the three types of challenges. Nevertheless, different immune-related pathways were activated in response to the different parasite stages, suggesting specific recognition mechanisms. Furthermore, the analyses provided useful complementary data to previous in vivo challenges, and confirmed the potential of some proposed biomarkers. The combined analysis of gene expression in host and parasite identified several processes in both the clam and P. olseni, such as redox and glucose metabolism, protease activity, apoptosis and iron metabolism, whose modulation suggests cross-talk between parasite and host. This information might be critical to determine the outcome of the infection, thus highlighting potential therapeutic targets. Altogether, the results of this study aid to understand the response and interaction between R. philippinarum–P. olseni and will contribute for developing effective control strategies for this threatening parasitosis.
Project description:The Manila clam (Ruditapes philippinarum) is the bivalve species with the highest world production from both fisheries and aquaculture, but its production is seriously threatened by perkinsosis, a disease caused by the protozoan parasite Perkinsus olseni. To understand the molecular mechanisms underlying R. philippinarum–P. olseni interaction, we analyzed the gene expression profiles of in vitro challenged clam hemocytes and P. olseni trophozoites, using two oligo-microarray platforms, one previously validated for R. philippinarum hemocytes and a new one developed and validated in this study for P. olseni. Manila clam hemocytes were in vitro challenged with trophozoites, zoospores, and extracellular products from P. olseni in vitro cultures, while P. olseni trophozoites were in vitro challenged with Manila clam plasma along the same time-series (1 h, 8 h, and 24 h). The hemocytes showed a fast activation of the innate immune response, particularly associated with hemocyte recruitment, in the three types of challenges. Nevertheless, different immune-related pathways were activated in response to the different parasite stages, suggesting specific recognition mechanisms. Furthermore, the analyses provided useful complementary data to previous in vivo challenges, and confirmed the potential of some proposed biomarkers. The combined analysis of gene expression in host and parasite identified several processes in both the clam and P. olseni, such as redox and glucose metabolism, protease activity, apoptosis and iron metabolism, whose modulation suggests cross-talk between parasite and host. This information might be critical to determine the outcome of the infection, thus highlighting potential therapeutic targets. Altogether, the results of this study aid to understand the response and interaction between R. philippinarum–P. olseni and will contribute for developing effective control strategies for this threatening parasitosis.
Project description:The Manila clam (Ruditapes philippinarum) is the bivalve species with the highest world production from both fisheries and aquaculture, but its production is seriously threatened by perkinsosis, a disease caused by the protozoan parasite Perkinsus olseni. To understand the molecular mechanisms underlying R. philippinarum–P. olseni interaction, we analyzed the gene expression profiles of in vitro challenged clam hemocytes and P. olseni trophozoites, using two oligo-microarray platforms, one previously validated for R. philippinarum hemocytes and a new one developed and validated in this study for P. olseni. Manila clam hemocytes were in vitro challenged with trophozoites, zoospores, and extracellular products from P. olseni in vitro cultures, while P. olseni trophozoites were in vitro challenged with Manila clam plasma along the same time-series (1 h, 8 h, and 24 h). The hemocytes showed a fast activation of the innate immune response, particularly associated with hemocyte recruitment, in the three types of challenges. Nevertheless, different immune-related pathways were activated in response to the different parasite stages, suggesting specific recognition mechanisms. Furthermore, the analyses provided useful complementary data to previous in vivo challenges, and confirmed the potential of some proposed biomarkers. The combined analysis of gene expression in host and parasite identified several processes in both the clam and P. olseni, such as redox and glucose metabolism, protease activity, apoptosis and iron metabolism, whose modulation suggests cross-talk between parasite and host. This information might be critical to determine the outcome of the infection, thus highlighting potential therapeutic targets. Altogether, the results of this study aid to understand the response and interaction between R. philippinarum–P. olseni and will contribute for developing effective control strategies for this threatening parasitosis.