Project description:ERK is a key coordinator of the epithelial to mesenchymal transition (EMT). However, the mechanisms by which ERK controls the EMT program are not well understood. We used microarray to determine global changes of gene expression mediated by ERK2.
Project description:The overall goal of this project is to investigate the role of Erk2-mediated signaling in regulating the cellular metabolism of cranial neural crest (CNC) cells during palate development. Here, we conducted gene expression profiling of palate tissue from wild type mice as well as those with a neural crest specific conditional inactivation of the Erk2 gene. The latter mice exhibit micrognathia, tongue defects and cleft palate, which is among the most common congenital birth defects and observed in many syndromic conditions.
Project description:The nuclear hormone receptor, estrogen receptor-alpha (ERα), and MAP kinases both play key roles in hormone-dependent cancers, yet their interplay and the integration of their signaling inputs remain poorly understood. In these studies, we document that estrogen-occupied ERα activates and interacts with ERK2, a downstream effector in the MAPK pathway, resulting in ERK2 and ERα colocalization at chromatin binding sites across the genome of breast cancer cells. KEYWORDS: siRNA knock-down, ligand treatment
Project description:The overall goal of this project is to investigate the role of Erk2-mediated signaling in regulating the cellular metabolism of cranial neural crest (CNC) cells during palate development. Here, we conducted gene expression profiling of palate tissue from wild type mice as well as those with a neural crest specific conditional inactivation of the Erk2 gene. The latter mice exhibit micrognathia, tongue defects and cleft palate, which is among the most common congenital birth defects and observed in many syndromic conditions. To investigate the adverse effects of dysfunctional ERK signaling on the cellular metabolism of palatal mesenchyme during palatogenesis, we analyzed mice with a neural crest cell-specific conditional inactivation of Erk2 (Erk2fl/fl;Wnt1-Cre). We performed microarray analyses of primary mouse embryonic palatal mesenchymal cells of Erk2fl/fl;Wnt1-Cre mutant mice and Erk2fl/fl control mice, collected at embryonic day 13.5 (n=3 per genotype) and E14.5 (n=5 per genotype).
Project description:We knocked out ERK1 and ERK2 in the striatopallidal population of striatal medium spiny neurons and analyzed differences in gene expression at P17, a time of increased synapse formation. We used whole gene microarray to assess transcriptional changes that occur in the mouse striatum at P17 in response to ERK1/2 deletion in striatopallidal medium spiny neurons.
Project description:Effective immune responses depend upon appropriate T cell differentiation in accord with the nature of an infectious agent, and the contingency of differentiation depends minimally on T cell antigen receptor, co-receptor, and cytokine signals. In this reverse genetic study we show that the Map Kinase, Erk2, is nonessential for T cell proliferation in the presence of optimum co-stimulation. Instead, it has opposite polar effects on T-bet and Gata3 expression and hence on Th1 and Th2 differentiation. Alternatively, in the presence of TGFbeta, the Erk pathway suppresses a large program of gene expression effectively limiting the differentiation of Foxp3+ T reg cells. In the latter case, the mechanisms involved include suppression of Gata3 and Foxp3, induction of Tbx21, phosphorylation of Smad2,3, and possibly suppression of Socs2, a positive inducer of Stat5 signaling. Consequently, loss of Erk2 severely impeded Th1 differentiation while enhancing the development of Foxp3+ induced T regulatory cells. Selected profiles of gene expression under multiple conditions of T cell activation illustrate the opposing consequences of Erk pathway signaling. Analysis of the Th1 and iTreg differentiation regulated by Erk2. Total RNA obtained from WT or Erk2 deficient CD4 T cells in different conditions.
Project description:The nuclear hormone receptor, estrogen receptor-alpha (ERα), and MAP kinases both play key roles in hormone-dependent cancers, yet their interplay and the integration of their signaling inputs remain poorly understood. In these studies, we document that estrogen-occupied ERα activates and interacts with ERK2, a downstream effector in the MAPK pathway, resulting in ERK2 and ERα colocalization at chromatin binding sites across the genome of breast cancer cells. KEYWORDS: siRNA knock-down, ligand treatment MCF-7 human breast adenocarcinoma cells were tranfected with control, ERK1 and ERK2 siRNA for 60 hours and treated with 0.1% EtOH (Vehicle) or 10 nM E2 for 4 hours or 24 hours, and cDNA microarray analyses were carried out using Affymetrix [HG-U133A_2] Affymetrix Human Genome U133A 2.0 Array.
Project description:Effective immune responses depend upon appropriate T cell differentiation in accord with the nature of an infectious agent, and the contingency of differentiation depends minimally on T cell antigen receptor, co-receptor, and cytokine signals. In this reverse genetic study we show that the Map Kinase, Erk2, is nonessential for T cell proliferation in the presence of optimum co-stimulation. Instead, it has opposite polar effects on T-bet and Gata3 expression and hence on Th1 and Th2 differentiation. Alternatively, in the presence of TGFbeta, the Erk pathway suppresses a large program of gene expression effectively limiting the differentiation of Foxp3+ T reg cells. In the latter case, the mechanisms involved include suppression of Gata3 and Foxp3, induction of Tbx21, phosphorylation of Smad2,3, and possibly suppression of Socs2, a positive inducer of Stat5 signaling. Consequently, loss of Erk2 severely impeded Th1 differentiation while enhancing the development of Foxp3+ induced T regulatory cells. Selected profiles of gene expression under multiple conditions of T cell activation illustrate the opposing consequences of Erk pathway signaling.
Project description:The ERK/MAPK signal transduction cascade is one of the key pathways regulating proliferation and differentiation in development and disease. In human embryonic stem cells (hESCs), ERK signaling is required for their self-renewing property. Here we studied the convergence of the ERK signaling cascade at the DNA by mapping genome-wide kinase-chromatin interactions for ERK2 in hESCs. We observe that ERK2 targets genes coding for small RNAs, histones, and genes involved in cellular metabolism and cell cycle. We find that the transcription factor ELK1 is essential in hESCs and that ERK2 co-occupies promoters bound by ELK1. Strikingly, promoters bound by ELK1 without ERK2 are occupied by Polycomb group proteins that repress genes involved in lineage commitment. In summary, we propose a model where extracellular signaling-stimulated proliferation and intrinsic repression of differentiation is integrated to maintain the identity of hESCs.