Project description:Chronic Fatigue Syndrome (CFS/ME) is a complex multisystem disease, with a pathogenesis that is undetermined. A large cohort of genes demonstrating altered expression in CFS/ME implicates the role of translational regulatory molecules, microRNA (miRNA), in the pathogenesis of this disease. We aimed to define the changes in microRNA expression in peripheral blood mononuclear cell (PBMC) samples in CFS/ME patients. miRNA expression was analysed in PBMC samples taken from CFS/ME patients and healthy controls, using the Ambion Bioarray V1. miRNA demonstrating differential expression were validated by qRT-PCR and analysed in an independent patient cohort in fractionated blood cell populations. The targets of miRNA hsa-miR-99b and hsa-miR-330-3p were then identified by gene expression analysis after transfection into primary NK cells.Microarray analysis identified differential expression of 34 miRNA, all of which were up-regulated. Four of the 34 miRNA had confirmed expression changes by qRT-PCR. Fractionating PBMC samples by cell type from an independent patient cohort identified changes in miRNA expression in NK-cells, B-cells and monocytes with the most significant abnormalities occurring in NK cells. Transfecting primary NK cells with hsa-miR-99b and hsa-miR-330-3p, respectively, resulted in gene expression changes consistent with NK cell activation and diminished cytotoxicity.This study demonstrates altered microRNA expression in the peripheral blood mononuclear cells of CFS/ME patients, which are potential diagnostic biomarkers. The greatest degree of miRNA deregulation was identified in NK cells with targets consistent with cellular activation and altered effector function.
Project description:The gene expression in vascular endothelial cells (VECs) and circulating fibrocytes (CFs) was tested either culturing alone or co-cultured. Our previous study showed that CFs inhibit both proliferation and apoptosis of VECs. In this present study, we co-cultured CFs and VECs in Transwell and tested the gene expression in CFs and VECs in order to delight the mechanism under which CFs affect the proliferation and apoptosis of VECs.
Project description:Examination of DNA methylome patterns in a larger cohort of ME/CFS samples using the Illumina Infinium HumanMethylation450 Beadchip Array
Project description:We extended the mathematical models of measuring biodiversity to estimate DNA methylation heterogeneity in a cell population. We propose a model-based approach (abundance-based, phylogeny-based and pairwise similarity-based heterogeneity) and consider similarity in DNA methylation patterns from individual cells to evaluate heterogeneity that overcomes biases due to missing data. We also applied commonly used non-model based method (methylation entropy) and other reported methods of estimating methylation heterogeneity such as single-cell based approach to evaluate methylation heterogeineity.
Project description:This study compared whole blood gene expression in CFS adolescent and healthy controls, and explored associations between gene expression and neuroendocrine markers, immune markers and clinical markers within the CFS group.
Project description:Gene expression analysis of RNA was performed using the commercially available NanoString® nCounter Immune Exhaustion gene expression panel (NanoString Technologies, Seattle, WA, USA). This panel contains 785 genes to elucidate mechanisms behind T cell, B cell and NK cell exhaustion in disease. Ribonucleic acid (RNA) was extracted from peripheral blood mononuclear cells (PBMCs) isolated from ME/CFS (n=14), long COVID (n=15), and healthy control (HC; n=18) participants. ME/CFS participants were included according to Canadian Consensus Criteria for ME. Long COVID participants were eligible according to the working case definition for Post COVID-19 Condition published by the World Health Organization.
Project description:Examination of DNA methylome patterns for potential subtypes in a larger cohort of ME/CFS samples using the Illumina Infinium HumanMethylation450 Beadchip Array Bisulfite-converted DNA from 25 samples were hybridised onto the Illumina Infinium HumanMethylation450 Beadchip Array
Project description:Myalgic encephalomyelitis / chronic fatigue syndrome (ME/CFS) is a syndrome of unknown etiology characterized by profound fatigue exacerbated by physical activity, also known as post-exertional malaise (PEM). Previously, we did not detect evidence of immune dysregulation or virus reactivation outside of PEM periods. Here we sought to determine whether cardiopulmonary exercise stress testing of ME/CFS patients could trigger such changes. ME/CFS patients (n=14) and matched sedentary controls (n=11) were subjected to cardiopulmonary exercise on 2 consecutive days and followed up to 7 days post-exercise, and longitudinal whole blood samples analyzed by RNA-seq. Although ME/CFS patients showed significant worsening of symptoms following exercise versus controls, with 8 of 14 ME/CFS patients showing oxygen consumption (V̇O2) on day 2, transcriptome analysis yielded only 6 differentially expressed gene (DEG) candidates when comparing ME/CFS patients to controls across all time points. None of the DEGs were related to immune signaling, and no DEGs were found in ME/CFS patients before and after exercise. Virome composition (P=0.746 by chi-square test) and number of viral reads (P = 0.098 by paired t-test) were not significantly associated with PEM. These observations do not support transcriptionally-mediated immune cell dysregulation or viral reactivation in ME/CFS patients during symptomatic PEM episodes.