Project description:Scedosporium aurantiacum is an opportunistic filamentous fungus increasingly isolated from the sputum of cystic fibrosis patients, and is especially prevalent in Australia. At the moment, very little is known about the infection mechanism of this fungus. Secreted proteases have been shown to contribute to fungal virulence in several studies with other fungi. Here we have compared the profiles of proteases secreted by a clinical isolate Scedosporium aurantiacum (WM 06.482) and an environmental strain (WM 10.136) grown on a synthetic cystic fibrosis sputum medium supplemented with casein or mucin. Protease activity was assessed using class-specific substrates and inhibitors. Subtilisin-like and trypsin-like serine protease activity was detected in all cultures. The greatest difference in the secretion of proteases between the two strains occurred in mucin-supplemented medium, where the activities of the elastase-like, trypsin-like and aspartic proteases were, overall, 2.5-75 fold higher in the clinical strain compared to the environmental strain. Proteases secreted by the two strains in the mucin-supplemented medium were further analyzed by mass spectrometry. Six homologs of fungal proteases were identified from the clinical strain and five from the environmental strain. Of these, three were common for both strains including a subtilisin peptidase, a putative leucine aminopeptidase and a PA-SaNapH-like protease. Trypsin-like protease was identified by mass spectrometry only in the clinical isolate even though trypsin-like activity was present in all cultures. In contrast, high elastase-like activity was measured in the culture supernatant of the clinical strain but could not be identified by mass spectrometry searching against other fungi in the NCBI database. Future availability of an annotated genome will help finalise identification of the S. aurantiacum proteases.
Project description:In this study, we combined metabolic reconstruction, growth assays, metabolome and transcriptome analyses to obtain a global view of the sulfur metabolic network and of the response to sulfur availability in Brevibacterium aurantiacum. In agreement with the growth of B. aurantiacum in the presence of sulfate and cystine, the metabolic reconstruction showed the presence of a sulfate assimilation pathway and of thiolation pathways that produce cysteine (cysE and cysK) or homocysteine (metX and metY) from sulfide, of at least one gene of the transsulfuration pathway (aecD) and of genes encoding three MetE-type methionine synthases. We also compared the expression profiles of B. aurantiacum ATCC9175 during sulfur starvation and in the presence of sulfate, cystine or methionine plus cystine. In sulfur starvation, 690 genes including 21 genes involved in sulfur metabolism and 29 genes encoding amino acids and peptide transporters were differentially expressed. We also investigated changes in pools of sulfur-containing metabolites and in expression profiles after growth in the presence of sulfate, cystine or methionine plus cystine. The expression of genes involved in sulfate assimilation and cysteine synthesis was repressed in presence of cysteine, while the expression of metX, metY, metE1, metE2 and BL613 encoding a probable cystathionine-γ-synthase decreased in the presence of methionine. We identified three ABC transporters: two stronger transcribed during cysteine limitation and one during methionine depletion. Finally, the expression of genes encoding a methionine γ-lyase, BL929, and a methionine transporter (metPS) was induced in the presence of methionine, in conjunction with a significant increase of volatile sulfur compounds production. This SuperSeries is composed of the SubSeries listed below.