Project description:L. helveticus is used to modulate cheese flavor and as a starter organism in certain cheese varieties. Our group has compiled a draft (4x) sequence for the 2.4 Mb genome of an industrial strain L. helveticus CNRZ32. The primary aim was to investigate expression of 168 completely sequenced genes during growth in milk and MRS medium using microarrays. Oligonucleotide probes against each of the completely sequenced genes were compiled on maskless photolithography-based DNA microarrays. Additionally, the entire draft genome sequence was used to produce tiled microarrays where the non-interrupted sequence contigs were covered by consecutive 24-mer probes. Keywords: growth conditions response
Project description:The long-tailed macaque, also referred to as cynomolgus monkey (Macaca fascicularis), is one of the most important non-human primate animal models in basic and applied biomedical research. To improve the predictive power of primate experiments for humans, we determined the genome sequence of a Macaca fascicularis female of Mauritian origin using a whole-genome shotgun sequencing approach. We applied a template switch strategy which employs either the rhesus or the human genome to assemble sequence reads. The 6-fold sequence coverage of the draft genome sequence enabled discovery of about 2.1 million potential single-nucleotide polymorphisms based on occurrence of a dimorphic nucleotide at a given position in the genome sequence. Homology-based annotation allowed us to identify 17,387 orthologs of human protein-coding genes in the M. fascicularis draft genome and the predicted transcripts enabled the design of a M. fascicularis-specific gene expression microarray. Using liver samples from 36 individuals of different geographic origin, we identified 718 genes with highly variable expression in liver, whereas the majority of the transcriptome shows relatively stable and comparable expression. Knowledge of the M. fascicularis draft genome is an important contribution to both the use of this animal in disease models and the safety assessment of drugs and their metabolites. In particular, this information allows high-resolution genotyping and microarray-based gene expression profiling for animal stratification, thereby allowing the use of well-characterized animals for safety testing. Finally, the genome sequence presented here is a significant contribution to the global "3R" animal welfare initiative, which has the goal to reduce, refine and replace animal experiments.
Project description:Since CNVs play a vital role in genomic studies, it is an imperative need to develop a comprehensive, more accurate and higher resolution porcine CNV map with practical significance in follow-up CNV functional analyses To detect CNV of pigs, we performed high density aCGH data of diverse pig breeds in the framework of the pig draft genome sequence (Sscrofa10.2)
Project description:Since CNVs play a vital role in genomic studies, it is an imperative need to develop a comprehensive, more accurate and higher resolution porcine CNV map with practical significance in follow-up CNV functional analyses To detect CNV of pigs, we performed high density aCGH data of diverse pig breeds in the framework of the pig draft genome sequence (Sscrofa10.2)
Project description:Acetic acid bacteria are obligately aerobic alphaproteobacteria that have a unique ability to incompletely oxidize various alcohols and sugars to organic acids. The ability of these bacteria to incompletely oxidize ethanol to acetate has been historically utilized for vinegar production. The mechanism of switching between incomplete oxidation and assimilatory oxidation and the control of energy and carbon metabolism in acetic acid bacteria are not fully understood. To understand the physiology and molecular biology of acetic acid bacteria better, we determined the draft genome sequence of Acetobacter aceti NBRC 14818, which is the type strain of the genus. Based on this draft genome sequence, the transcriptome profiles in A. aceti cells grown on ethanol, acetate, glucose, or mix of ethanol and glucose was determined by using NimbleGen Prokaryotic Expression array (4x72K).
Project description:Helicobacter pylori, which is known as pathogens of various gastric diseases, have many types of genome sequence variants. That is part of the reason why pathogenesis and infection mechanisms of the H. pylori-driven gastric diseases have not been well clarified yet. Here we performed a large-scale proteome analysis to profile the heterogeneity of the proteome expression of 7 H. pylori strains by using LC/MS/MS-based proteomics approach combined with a customized database consisting of non-redundant tryptic peptide sequences derived from full genome sequences of 52 H. pylori strains. The non-redundant peptide database enabled us to identify more peptides in the database search of MS/MS data, compared with a simply merged protein database. Using the approach we performed proteome analysis of genome-unknown strains of H. pylori in as large-scale as genome-known ones. Clustering of the H. pylori strains using the proteome profiling slightly differed from the genome profiling and more clearly divided the strains into two groups based on the isolated area. Furthermore, we also identified phosphorylated proteins and sites of the H. pylori strains and obtained phosphorylation motif located in the N-terminus, which are commonly observed in bacteria.
Project description:The long-tailed macaque, also referred to as cynomolgus monkey (Macaca fascicularis), is one of the most important non-human primate animal models in basic and applied biomedical research. To improve the predictive power of primate experiments for humans, we determined the genome sequence of a Macaca fascicularis female of Mauritian origin using a whole-genome shotgun sequencing approach. We applied a template switch strategy which employs either the rhesus or the human genome to assemble sequence reads. The 6-fold sequence coverage of the draft genome sequence enabled discovery of about 2.1 million potential single-nucleotide polymorphisms based on occurrence of a dimorphic nucleotide at a given position in the genome sequence. Homology-based annotation allowed us to identify 17,387 orthologs of human protein-coding genes in the M. fascicularis draft genome and the predicted transcripts enabled the design of a M. fascicularis-specific gene expression microarray. Using liver samples from 36 individuals of different geographic origin, we identified 718 genes with highly variable expression in liver, whereas the majority of the transcriptome shows relatively stable and comparable expression. Knowledge of the M. fascicularis draft genome is an important contribution to both the use of this animal in disease models and the safety assessment of drugs and their metabolites. In particular, this information allows high-resolution genotyping and microarray-based gene expression profiling for animal stratification, thereby allowing the use of well-characterized animals for safety testing. Finally, the genome sequence presented here is a significant contribution to the global "3R" animal welfare initiative, which has the goal to reduce, refine and replace animal experiments. A 36-microarray study using total RNA recovered from liver samples of untreated Cynomolgus monkeys of good laboratory practice (GLP) drug safety studies. The monkeys were from the Philippines, a Chinese colony, and Mauritius. Each microarray measures the expression level of 16,896 genes using 20,047 probe sets with six 60-mer probes (PM) per probe set. Each probe set is represented once on the array. The Cynomolgus monkey gene expression results analyzed in this study are further described in Ebeling et al. (2011) (PMID 21862625).
Project description:Genotyping studies suggest that there is genetic variability among P. gingivalis strains, however the extent of variability remains unclear, and the regions of variability have only partially been identified. We previously used heteroduplex analysis of the ribosomal operon intergenic spacer region (ISR) to type P. gingivalis strains in several diverse populations, identifying 6 predominant heteroduplex types and many minor ones. In addition we used ISR sequence analysis to determine the relatedness of P. gingivalis strains to one another, and demonstrated a link between ISR sequence phylogeny and the disease-associated phenotype of P. gingivalis strains. The availability of whole genome microarrays based on the genomic sequence of strain W83 has allowed a more comprehensive analysis of P. gingivalis strain variability, using the entire genome. The objectives of this study were to define the phylogeny of P. gingivalis strains using the entire genome, to compare the phylogeny based on genome content to the phylogeny based on a single locus (ISR), and to identify genes that are associated with the strongly disease-associated strain W83 that could be important for virulence. Keywords: Comparative genomic hybridization
Project description:Acetic acid bacteria are obligately aerobic alphaproteobacteria that have a unique ability to incompletely oxidize various alcohols and sugars to organic acids. The ability of these bacteria to incompletely oxidize ethanol to acetate has been historically utilized for vinegar production. The mechanism of switching between incomplete oxidation and assimilatory oxidation and the control of energy and carbon metabolism in acetic acid bacteria are not fully understood. To understand the physiology and molecular biology of acetic acid bacteria better, we determined the draft genome sequence of Acetobacter aceti NBRC 14818, which is the type strain of the genus. Based on this draft genome sequence, the transcriptome profiles in A. aceti cells grown on ethanol, acetate, glucose, or mix of ethanol and glucose was determined by using NimbleGen Prokaryotic Expression array (4x72K). Acetobacter aceti NBRC14818 was cultivated in the medium containing ethanol, acetate, glucose, or mix of ethanol and glucose as carbon sources in Erlenmeyer flask with rotary shaking. Total RNA was extracted when optical density at 600 nm was 0.3-0.4. The experiment was performed in duplicate independent cultures.