Project description:Analysis of gingival crevicular fluid (GCF) samples may give information of the identity of unattached (planktonic) subgingival bacteria, the 35 forefront candidates for systemic dispersal via ulcerated periodontal pocket epithelium. Our study represents the first one targeting the identity of bacteria in gingival crevicular fluid. Methodology/Principal findings: We determined bacterial species diversity in GCF samples of a group of periodontitis patients and delineated contributing bacterial and host-associated factors. Subgingival paper point (PP) samples from the same sites were taken for comparison. After DNA extraction, 16S rRNA genes were PCR amplified and DNA-DNA hybridization was performed using a microarray for over 300 bacterial species or groups. Altogether 133 species from 41 genera and 8 phyla 45 were detected with 9 to 62 and 18 to 64 species in GCF and PP samples, respectively, 46 per patient. Projection to latent structures by means of partial least squares (PLS) was applied to the multivariate data analysis. PLS regression analysis showed that species of genera including Campylobacter, Selenomonas, Porphyromonas, Catonella, Tannerella, Dialister, Peptostreptococcus, Streptococcus and Eubacterium had significant positive correlations and the number of teeth with low-grade attachment loss a significant negative correlation to species diversity in GCF samples. OPLS/O2PLS discriminant analysis revealed significant positive correlations to GCF sample group membership for species of genera Campylobacter, Leptotrichia, Prevotella, Dialister, Tannerella, Haemophilus, Fusobacterium, Eubacterium, and Actinomyces. Conclusions/Significance: Among a variety of detected species those traditionally classified as Gram-negative anaerobes growing in mature subgingival biofilms were the main predictors for species diversity in GCF samples as well as responsible for distinguishing GCF samples from PP samples. GCF bacteria may provide new prospects for studying dynamic properties of subgingival biofilms. The microbial profiles of GCF and subgingival plaque were analyzed from 17 subjects with periodontal disease.
Project description:Analysis of gingival crevicular fluid (GCF) samples may give information of the identity of unattached (planktonic) subgingival bacteria, the 35 forefront candidates for systemic dispersal via ulcerated periodontal pocket epithelium. Our study represents the first one targeting the identity of bacteria in gingival crevicular fluid. Methodology/Principal findings: We determined bacterial species diversity in GCF samples of a group of periodontitis patients and delineated contributing bacterial and host-associated factors. Subgingival paper point (PP) samples from the same sites were taken for comparison. After DNA extraction, 16S rRNA genes were PCR amplified and DNA-DNA hybridization was performed using a microarray for over 300 bacterial species or groups. Altogether 133 species from 41 genera and 8 phyla 45 were detected with 9 to 62 and 18 to 64 species in GCF and PP samples, respectively, 46 per patient. Projection to latent structures by means of partial least squares (PLS) was applied to the multivariate data analysis. PLS regression analysis showed that species of genera including Campylobacter, Selenomonas, Porphyromonas, Catonella, Tannerella, Dialister, Peptostreptococcus, Streptococcus and Eubacterium had significant positive correlations and the number of teeth with low-grade attachment loss a significant negative correlation to species diversity in GCF samples. OPLS/O2PLS discriminant analysis revealed significant positive correlations to GCF sample group membership for species of genera Campylobacter, Leptotrichia, Prevotella, Dialister, Tannerella, Haemophilus, Fusobacterium, Eubacterium, and Actinomyces. Conclusions/Significance: Among a variety of detected species those traditionally classified as Gram-negative anaerobes growing in mature subgingival biofilms were the main predictors for species diversity in GCF samples as well as responsible for distinguishing GCF samples from PP samples. GCF bacteria may provide new prospects for studying dynamic properties of subgingival biofilms.
Project description:Disease outbreaks due to the consumption of legume seedlings contaminated with human enteric bacterial pathogens like Escherichia coli O157:H7 and Salmonella enterica are reported every year. We found surface and internal colonization of Medicago truncatula by Salmonella enterica and Escherichia coli O157:H7 even with inoculum levels as low as two bacteria per plant. Expression analyses using microarray revealed that some Medicago truncatula genes were regulated in a similar manner in response to both of these enteric pathogens. Medicago truncatula roots were inoculated with low inoculum levels of two enteric bacteria per plant (E. coli O157:H7 and Salmonella). 10 days post inoculated plants were used for RNA extraction and hybridization on Affymetrix microarrays.
Project description:Objective: Reg3g has been proposed to have a protective role against infection due to its bactericidal effect on Gram-positive bacteria, but evidence from in vivo studies is lacking. Therefore we generated a Reg3g-/- mouse, to determine its role in intestinal homeostasis and protection against experimental infection. Methods: Reg3g-/- mice were phenotyped using histological methods and a range of innate and immune markers. To investigate the antimicrobial role of Reg3g we experimentally infected mice with Gram-positive Listeria monocytogenes and Gram-negative Salmonella entertitidis and measured translocated bacteria, mucosal and systemic markers of infection. Results: Reg3g-/- mice display altered ileal mucus distribution and increased bacterial contact with the epithelium. , concomitant with This increased the inflammatory status in of the ileal mucosa and increased expression of Il-22, myeloperoxidase (MPO) and serum chemokines in serum. In response to infection, Reg3g-/- mice showed transcriptome changes and elevated levels of mucosal MPO in the ileum, but no increased bacterial translocation to the organs. Conclusions: Reg3g is equally distributed throughout the mucus of wild type (wt) mice and its absence results in an altered distribution of the ileal mucus. Reg3g deficiency also results resulted in increased bacterial contact with the epithelium and heightened inflammatory responses in the ileal mucosa. We propose that Reg3g binds pathogens suggesting it and contributes to mucus barrier function by ensnaring bacteria. Compared to wt mice, Reg3g-/- mice infected with S. enteritidis and L. monocytogenes show an increase of mucosal inflammatory markers indicating the protective, anti-microbial roles of Reg3g in defence against both Gram-positive and -negative bacteria. This study was set up according to a one-treatment, one-control design; treatments were inoculation with either Listeria monocytogenes or Salmonella enteritidis bacterial pathogens. The study results contain transcriptional profiles from infected and sham-infected control C57Bl/6 mice. In total, this study includes data from 2 treatments and 1 control of (pooled) wild-type C57Bl/6 mice and Reg3g-/- KO mutant C57Bl/6 mice = 6 arrays.
Project description:Disease outbreaks due to the consumption of legume seedlings contaminated with human enteric bacterial pathogens like Escherichia coli O157:H7 and Salmonella enterica are reported every year. We found surface and internal colonization of Medicago truncatula by Salmonella enterica and Escherichia coli O157:H7 even with inoculum levels as low as two bacteria per plant. Expression analyses using microarray revealed that some Medicago truncatula genes were regulated in a similar manner in response to both of these enteric pathogens.
Project description:BackgroundIn 2017, World Health Organization (WHO) published a catalogue of 12 families of antibiotic-resistant "priority pathogens" that are posing the greatest threats to human health. Six of these dreaded pathogens are known to infect the human gastrointestinal system. In addition to causing gastrointestinal and systemic infections, these pathogens can also affect the composition of other microbes constituting the healthy gut microbiome. Such aberrations in gut microbiome can significantly affect human physiology and immunity. Identifying the virulence mechanisms of these enteric pathogens are likely to help in developing newer therapeutic strategies to counter them.ResultsUsing our previously published in silico approach, we have evaluated (and compared) Host-Pathogen Protein-Protein Interaction (HPI) profiles of four groups of enteric pathogens, namely, different species of Escherichia, Shigella, Salmonella and Vibrio. Results indicate that in spite of genus/ species specific variations, most enteric pathogens possess a common repertoire of HPIs. This core set of HPIs are probably responsible for the survival of these pathogen in the harsh nutrient-limiting environment within the gut. Certain genus/ species specific HPIs were also observed.ConslusionsThe identified bacterial proteins involved in the core set of HPIs are expected to be helpful in understanding the pathogenesis of these dreaded gut pathogens in greater detail. Possible role of genus/ species specific variations in the HPI profiles in the virulence of these pathogens are also discussed. The obtained results are likely to provide an opportunity for development of novel therapeutic strategies against the most dreaded gut pathogens.
Project description:Pathogenic bacteria can rapidly respond to stress environments, such as exposure to reactive oxygen species (ROS). The thiol (-SH) groups of cysteine residues in many proteins serve as redox-sensitive switches, providing triggers for ROS-mediated signaling events. In this study, we profiled the reversible thiol oxidation during ROS exposure of the proteome of Vibrio cholerae, a Gram-negative human pathogen that causes cholera. We identified posttranslational modifications of two cysteine residues of ArcA, a response regulator that is known to be phosphorylated under oxygen limiting conditions and regulates global carbon oxidation pathways. We showed that although ROS exposure abolished ArcA phosphorylation, it induced the formation of an intramolecular disulfide that promoted ArcA-ArcA interaction. Thiol oxidation of ArcA led to sustained ArcA activity and ROS resistance. We further demonstrated that V. cholerae ArcA cysteine residues were oxidized in cholera patient diarrheal stools, and that ArcA thiol oxidation is crucial for V. cholerae in vitro ROS resistance, colonization of ROS-rich gut niches, and environmental survival. Moreover, in other enteric pathogens such as Salmonella enterica, the cysteine residues in ArcA orthologs are conserved and thiol oxidation of ArcA plays important roles in ROS resistance both in vitro and in host cells. These results suggest that in enteric pathogens, as a response to ROS insults, thiol oxidation of ArcA is able to functionally mimic phosphorylation and retain ArcA activity, allowing for a balance in the expression of stress-related and pathogenesis-related genetic programs.
Project description:Vibrio species are recognized for their role in food- and water-borne diseases in humans, fish, and aquatic invertebrates. We screened bacterial strains isolated from raw food shrimp for those that are bactericidal to Vibrio strains. Here we identify and characterize Aeromonas dhakensis strain A603 which shows robust bactericidal activity specifically towards Vibrio and related taxa but less potency toward other Gram-negative species. Using the A603 genome and genetic analysis, we show that two antibacterial mechanisms account for its vibriocidal activity -- a highly potent Type Six Secretion System (T6SS) and biosynthesis of a vibriocidal phenazine-like small molecule, named here as Ad-Phen. Further analysis indicates coregulation between Ad-Phen and a pore-forming T6SS effector TseC, which potentiates V. cholerae to killing by Ad-Phen.