Project description:Lipid metabolism and antioxidant system contributed to salt salinity tolerance induced by Na+ accumulation in halophytic grass seashore paspalum
Project description:Here, we report a new draft genome sequence of an isolate of the ascomycete Claviceps paspali that is responsible for ergot disease in grasses of the Paspalum genus. This new draft genome sequence will provide useful data for evaluating intraspecies and interspecies genome variation in C. paspali and other Claviceps genus members.
Project description:Neotyphodium coenophialum is an endophytic fungus that infects most tall fescue (Festuca arundinacea) pastures that are commonly used in animal grazing systems in the United States. Beef cattle grazing such pastures are impaired in health and production performance, resulting in a large economic loss in US food-animal production systems. Based on the clinical symptoms and laboratory analyses of blood, it was hypothesized that such affected cattle display liver-specific changes in the expression of gene transcripts that are associated with the metabolic enzymes and transporters critical for beef health and performance. Microarray analysis using the GeneChip Bovine Genome Array (Affymetrix, Inc., Santa Clara, CA) was conducted to determine if grazing endophyte-infected tall fescue pastures affects the liver gene expression profiles of growing beef steers. Nineteen steers were assigned to graze either a low toxic endophyte tall fescue-mixed grass (LE treatment, 5.7 ha, n = 9) or a high toxic endophyte infected tall fescue (HE treatment, 5.7 ha, n = 10) pasture located in the University of Kentucky Agricultural Research Center. All steers had ad libitum access to fresh water and an industry standard mineral-vitamin supplement. 88 days grazing on pasture. Approximately 2 g of tissue from the right lobe of the liver of each steer were collected for RNA extraction and microarray analysis.
Project description:The hypocrealean fungus Claviceps paspali is a parasite of wild grasses. This fungus is widely utilized in the pharmaceutical industry for the manufacture of ergot alkaloids, but also produces tremorgenic and neurotoxic indole-diterpene (IDT) secondary metabolites such as paspalitrems A and B. IDTs cause significant losses in agriculture and represent health hazards that threaten food security. Conversely, IDTs may also be utilized as lead compounds for pharmaceutical drug discovery. Current protoplast-mediated transformation protocols of C. paspali are inadequate as they suffer from inefficiencies in protoplast regeneration, a low frequency of DNA integration, and a low mitotic stability of the nascent transformants. We adapted and optimized Agrobacterium tumefaciens-mediated transformation (ATMT) for C. paspali and validated this method with the straightforward creation of a mutant strain of this fungus featuring a targeted replacement of key genes in the putative IDT biosynthetic gene cluster. Complete abrogation of IDT production in isolates of the mutant strain proved the predicted involvement of the target genes in the biosynthesis of IDTs. The mutant isolates continued to produce ergot alkaloids undisturbed, indicating that equivalent mutants generated in industrial ergot producers may have a better safety profile as they are devoid of IDT-type mycotoxins. Meanwhile, ATMT optimized for Claviceps spp. may open the door for the facile genetic engineering of these industrially and ecologically important organisms.
Project description:Neotyphodium coenophialum is an endophytic fungus that infects most tall fescue (Festuca arundinacea) pastures that are commonly used in animal grazing systems in the United States. Beef cattle grazing such pastures are impaired in health and production performance, resulting in a large economic loss in US food-animal production systems. Based on clinical and biochemical blood analyte profiles, hepatic targeted gene and protein analyses, and hepatic transcriptomic profiling, microarray analysis using the WT Btau 4.0 Array (version 1.0, Affymetrix, Inc., Santa Clara, CA) was conducted to determine if grazing endophyte-infected tall fescue pastures affects pituitary gene expression profiles of growing beef steers. The specific overall hypothesis tested was that grazing high endophyte-infected pasture would alter the pituitary genomic expression profiles of the same growing steers, especially genes involved in production and secretion of prolactin, growth hormone, thyroid stimulating hormone, and adrenocorticotropic hormone. Sixteen steers were assigned to graze either a low toxic endophyte tall fescue-mixed grass (LE treatment, 5.7 ha, n = 8) or a high toxic endophyte infected tall fescue (HE treatment, 5.7 ha, n = 8) pasture located in the University of Kentucky Agricultural Research Center. All steers had ad libitum access to fresh water, an industry standard mineral-vitamin supplement, and grazed respective pastures for 89 to 105 days. Whole pituitaries were collected for RNA extraction and microarray analysis.
Project description:This study identifies key microbiome and epithelial cell subtypes involved in grass digestion and VFA metabolism in the rumen. By integrating multi-omic data, we reveal novel links between microbial activity, epithelial cell function, and grassland foraging, providing critical insights into mechanisms underlying grass prevalence and their implications for optimizing ruminant health and productivity. This research enhances our understanding of the grass-microbiome- rumen axis and its role in sustainable grazing systems.
Project description:Claviceps paspali is used in the pharmaceutical industry for the production of ergot alkaloids. This fungus also biosynthesizes paspalitrems, indole diterpene (IDT) mycotoxins that cause significant economic losses in agriculture and represent safety concerns for ergot alkaloid manufacture. Here, we use Agrobacterium-mediated transformation to replace the idtP and the idtF genes in the IDT biosynthetic gene cluster of C. paspali with a selectable marker gene. We show that the ΔidtP knockout mutant produces paspaline, the first IDT intermediate of the pathway. The ΔidtF strain produces unprenylated IDTs such as paspalinine and paspaline. These experiments validate the function of idtP as the gene encoding the cytochrome P450 monooxygenase that oxidizes and demethylates paspaline to produce 13-desoxypaxilline, and that of idtF as the gene that encodes the α-prenyltransferase that prenylates paspalinine at the C20 or the C21 positions to yield paspalitrems A and C, respectively. In addition, we also show that axenic cultures of the wild type, the ΔidtP and the ΔidtF mutant C. paspali strains fail to produce an assembly of IDTs that are present in C. paspali-Paspalum spp. associations.
Project description:1. The biosynthetic origin of the amide substituent of N-(alpha-hydroxyethyl)lysergamide has been studied. 2. [1-(14)C]Acetate, [(14)C]formate, [2-(14)C]mevalonic acid lactone, [2-(14)C]indole, dl-[3-(14)C]tryptophan, dl-[3-(14)C]serine, dl-[2-(14)C]alanine and [2-(14)C]pyruvate were efficiently incorporated into the alkaloid, but not dl-[1-(14)C]alanine or [1-(14)C]pyruvate. 3. Only the dl-[2-(14)C]alanine- and [2-(14)C]pyruvate-derived alkaloid contained appreciable radioactivity in the amide substituent. 4. l-[(15)N]Alanine-derived alkaloid was shown to be specifically labelled in the amide nitrogen. However, l-[(14)C,(15)N]alanine was found to be incorporated into the methylcarbinolamide substituent with an appreciable increase in the (15)N/(14)C ratio, suggesting that alanine is not the direct precursor of this moiety.