Project description:Direct cardiac reprogramming from fibroblasts holds great potential for disease modeling, drug screening, and regeneration. However, cardiac reprogramming remains inefficient in vitro, and induced cardiomyocytes (iCMs) generated in vitro are less mature than those in vivo, suggesting undefined biophysical factors may inhibit cardiac reprogramming. Previous studies mainly used conventional polystyrene dishes, and thus the effect of matrix rigidity on cardiac reprogramming remains unclear. Here, we developed a Matrigel-based hydrogel culture system to determine the effect of matrix rigidity and mechanotransduction on cardiac reprogramming. We found that soft matrix rigidity comparable to myocardium greatly enhanced cardiac reprogramming in combination with Gata4, Hand2, Mef2c, and Tbx5. Mechanistically, soft matrix enhanced cardiac reprogramming via inhibition of Rho/ROCK, actomyosin, and YAP/TAZ pathway, and suppression of fibroblast program, which were activated on rigid substrate. Intriguingly, inhibition of YAP/TAZ further suppressed integrin-mediated signaling to create a positive feedback loop for robust reprogramming. Thus, mechanotransduction may represent a new target for cardiac reprogramming.
Project description:We report the use of RNA-seq for transcriptional analysis of engineered myometrial tissues cultured on hydrogels with varied matrix rigidity and tissue alignment.
Project description:Heart failure (HF) is a leading cause of morbidity and mortality. As adult cardiomyocytes (CMs) have little regenerative capacity, after myocardial infarction (MI), resident cardiac fibroblasts (CFs) synthesize extracellular matrix to form scar tissues, resulting in myocardial remodeling and HF. Thus, both cardiac regeneration and fibrosis are therapeutic targets for chronic MI. We previously reported that fibroblasts were directly reprogrammed into induced CMs (iCMs) by overexpression of cardiogenic transcription factors in acute and chronic MI. Here we show that in vivo cardiac reprogramming improved cardiac function, and reversed cardiac remodeling in chronic MI using a novel transgenic mouse system. Transcriptome analysis revealed that in vivo cardiac reprogramming suppressed signs of fibrosis and inflammation. Thus, in vivo cardiac reprogramming may be a promising approach for chronic HF.
Project description:Heart failure (HF) is a leading cause of morbidity and mortality. As adult cardiomyocytes (CMs) have little regenerative capacity, after myocardial infarction (MI), resident cardiac fibroblasts (CFs) synthesize extracellular matrix to form scar tissues, resulting in myocardial remodeling and HF. Thus, both cardiac regeneration and fibrosis are therapeutic targets for chronic MI. We previously reported that fibroblasts were directly reprogrammed into induced CMs (iCMs) by overexpression of cardiogenic transcription factors in vitro and in vivo in acute MI. Here we show that in vivo cardiac reprogramming generated iCMs from resident CFs, improved cardiac function, and reversed fibrosis in chronic MI using a novel transgenic mouse system. Single-cell transcriptome analysis revealed that cardiac reprogramming shifted matrix-producing CFs, matrifibrocytes, to a quiescent state and changed the interstitial cell landscape, suppressing fibrotic and inflammatory signatures and activating angiogenic program. Thus, in vivo cardiac reprogramming may be a promising approach for chronic HF.
Project description:Direct cardiac reprogramming to induce cardiomyocyte-like cells, e.g. by GMT (Gata4, Mef2c and Tbx5), is a promising route for regenerating damaged heart in vivo and disease modeling in vitro. Supplementation with additional factors and chemical agents can enhance efficiency but raises concerns regarding selectivity to cardiac fibroblasts and complicates delivery for in situ cardiac reprogramming. Here, we screened 2000 chemicals with known biological activities and found that a combination of 2C (SB431542 and Baricitinib) significantly enhances cardiac reprogramming by GMT. Without Gata4, MT (Mef2c and Tbx5) plus 2C could selectively reprogram cardiac fibroblasts with enhanced efficiency, kinetics and cardiomyocyte function. More importantly, 2C+MYOCD selectively reprograms human cardiac fibroblasts into cardiomyocyte-like cells. 2C enhances cardiac reprogramming by inhibiting Alk5, Tyk2 and downregulating Oas2, Oas3, Serpina3n and Tgfbi. 2C thus enables selective and robust cardiac reprogramming that can greatly facilitate disease modeling in vitro and advance clinical therapeutic heart regeneration in vivo.
Project description:FGF2, FGF10, and VEGF greatly promote cardiac reprogramming under defined serum-free conditions by enhancing the conversion of partially reprogrammed cells into fully reprogrammed functional iCMs. Fibroblasts can be directly reprogrammed into cardiomyocyte-like cells (iCMs) by overexpression of cardiac transcription factors, including Gata4, Mef2c, and Tbx5; however, this process is inefficient under serum-based culture conditions, in which the conversion of partially reprogrammed cells into fully reprogrammed functional iCMs has been a major hurdle. Here, we report that a combination of fibroblast growth factor (FGF) 2, FGF10, and vascular endothelial growth factor (VEGF), termed FFV, promoted cardiac reprogramming under defined serum-free conditions, increasing spontaneously beating iCMs by 100-fold compared with those under conventional serum-based conditions. Mechanistically, FFV activated multiple cardiac transcriptional regulators and converted partially reprogrammed cells into functional iCMs through the p38 mitogen-activated protein kinase and phosphoinositol 3-kinase/AKT pathways. Moreover, FFV enabled cardiac reprogramming with only Mef2c and Tbx5 through the induction of cardiac reprogramming factors, including Gata4. Thus, defined culture conditions promoted the quality of cardiac reprogramming, and this finding provides new insights into the mechanism of cardiac reprogramming.