Project description:The role played by transcription factors in the regulation of strawberry fruit ripening process is scant. We have identified and functionally characterized FaPRE1, a non-DNA-binding bHLH transcription factor. FaPRE1 is a ripening-related transcription factor that regulates genes involved in cell architecture in strawberry fruit receptacles.
Project description:The role played by transcription factors in the regulation of strawberry fruit ripening process is scant. We have identified and functionally characterized FaDOF2, a DOF-type transcription factor. FaDOF2 is a ripening-related transcription factor that regulates key genes involved in eugenol biosynthesis in strawberry fruit receptacles.
Project description:With the development of high throughput sequencing technologies, plenty of non-coding RNAs (ncRNAs) have been discovered to play important roles in diverse plant biological processes. Although these ncRNAs extensively exist in plant, their biological functions are still remained to characterize. To obtain a comprehensive understanding of long non-coding RNA (lncRNA) function in strawberry fruit ripening progress, we performed transcriptomic analyses on the diploid strawberry Fragaria vesca in a time-course during fruit ripening. Here, we have identified 25,613 lncRNAs based on RNA-seq data from poly(A)-depleted libraries and rRNA-depleted libraries. Among them, most of lncRNAs exhibit stage-specific expression pattern. Functional analysis on F.vesca endogenous FRUIT RIPENING-RELATED LONG ANTISENSE INTERGENIC RNA (FRILAIR) in octaploid strawberry Falandi, we found that overexpression FRILAIR can compete miR397 to regulate its target laccase genes (LACs), and it may contribute to strawberry ripening. Our findings demonstrate that FRILAIR can act as a competing endogenous RNA (ceRNA) by disturbing miR397 to repress expression level of LACs, and would be valuable for strawberry ripening.
Project description:Fruit ripening in Citrus is not well understood at the molecular level. Knowledge of the regulatory mechanism of citrus fruit ripening at the post-transcriptional level in particular is lacking. Here, we comparatively analyzed the miRNAs and their targeted genes in a spontaneous late-ripening mutant, ?Fengwan? sweet orange (MT) (Citrus sinensis L. Osbeck), and its wild-type counterpart ('Fengjie 72-1', WT). Using high-throughput sequencing of small RNAs and RNA degradome tags, we identified 107 known and 21 novel miRNAs, as well as 225 target genes. A total of 24 miRNAs (16 known miRNAs and 8 novel miRNAs) were shown to be differentially expressed between MT and WT. The expression pattern of several key miRNAs and their target genes during citrus fruit development and ripening stages was examined. Csi-miR156k, csi-miR159 and csi-miR166d suppressed specific transcription factors (GAMYBs, SPLs and ATHBs) that are supposed to be important regulators involved in citrus fruit development and ripening. In the present study, miRNA-mediated silencing of target genes was found under complicated and sensitive regulation in citrus fruit. The identification of miRNAs and their target genes provide new clues for future investigation of mechanisms that regulate citrus fruit ripening.
Project description:[original title] Understanding the complexity of fruit ripening by transcriptome analysis of rin mutant fruit and in silico analysis of promoters of differentially regulated genes A tomato MADS-box transcription factor, LeMADS-RIN, controls fruit ripening and mutation in this gene results in non-ripening phenotype of fruit. This mutation down-regulates certain ripening related ethylene responses, however, other ethylene responses are normal. A complete understanding of this mutation and its effect on fruit transcriptome during ripening is not clear. In this study, microarray analysis has been used to investigate the influence of rin mutation on fruit transcriptome at different stages of ripening. A total of 2,398 genes were found to be differentially expressed in wild type fruit pericarp, which on cluster analysis indicated a major shift in their expression profiles in rin mutant fruit. A total of 1,802 genes were found to be differentially expressed between wild type and rin mutant fruits and 17% of these genes encoded regulatory elements, suggesting that mutation in LeMADS-RIN results in disturbance in the regulatory transcriptional networks during ripening. Since LeMADS-RIN has been reported to bind to the CArG box of LeACS2 promoter, in-silico analysis of 51 putative promoter sequences of the genes, that showed ripening associated up-regulation in wild type but showed impairment in up-regulation in rin mutant fruit during ripening, were searched for presence of CArG box along with ethylene and auxin responsive elements. The study revealed that only 24 putative promoter sequences harbor LeMADS-RIN specific CArG box suggesting an alternative mode of regulation by LeMADS-RIN for CArG box deficient genes. Three chronological stages of tomato (Solanum lycopersicon) fruit ripening were compared between wild type and rin mutant
Project description:[original title] Understanding the complexity of fruit ripening by transcriptome analysis of rin mutant fruit and in silico analysis of promoters of differentially regulated genes A tomato MADS-box transcription factor, LeMADS-RIN, controls fruit ripening and mutation in this gene results in non-ripening phenotype of fruit. This mutation down-regulates certain ripening related ethylene responses, however, other ethylene responses are normal. A complete understanding of this mutation and its effect on fruit transcriptome during ripening is not clear. In this study, microarray analysis has been used to investigate the influence of rin mutation on fruit transcriptome at different stages of ripening. A total of 2,398 genes were found to be differentially expressed in wild type fruit pericarp, which on cluster analysis indicated a major shift in their expression profiles in rin mutant fruit. A total of 1,802 genes were found to be differentially expressed between wild type and rin mutant fruits and 17% of these genes encoded regulatory elements, suggesting that mutation in LeMADS-RIN results in disturbance in the regulatory transcriptional networks during ripening. Since LeMADS-RIN has been reported to bind to the CArG box of LeACS2 promoter, in-silico analysis of 51 putative promoter sequences of the genes, that showed ripening associated up-regulation in wild type but showed impairment in up-regulation in rin mutant fruit during ripening, were searched for presence of CArG box along with ethylene and auxin responsive elements. The study revealed that only 24 putative promoter sequences harbor LeMADS-RIN specific CArG box suggesting an alternative mode of regulation by LeMADS-RIN for CArG box deficient genes.
Project description:The role played by transcription factors in the regulation of strawberry fruit ripening process is scant. We have identified and functionally characterized FaPRE1, a non-DNA-binding bHLH transcription factor. FaPRE1 is a ripening-related transcription factor that regulates genes involved in cell architecture in strawberry fruit receptacles.
Project description:Abscisic acid (ABA) regulates plant development and adaptation to environmental conditions. The ABA biosynthesis pathway in plants has been thoroughly elucidated; however, very few transcription factors directly regulating the expression of ABA biosynthetic genes have been identified. Here we show that the tomato (Solanum lycopersicum) zinc finger transcription factor SlZFP2, which is mainly expressed in developing fruits and axillary buds, negatively regulates ABA biosynthesis. Overexpression of SlZFP2 resulted in multiple phenotypic changes, including more branches, early flowering, delayed fruit ripening, lighter seeds and faster seed germination, whereas gene silencing by RNA interference (RNAi) caused poor fruit set and inhibited seed germination. Gene expression analysis showed that SlZFP2 represses ABA biosynthesis mainly through downregulation of the ABA biosynthetic genes SITIENS (SIT), FLACCA (FLC) and aldehyde oxidase SlAO1. SlZFP2 delays the onset of ripening through suppression of the ripening regulator COLORLESS NON-RIPENING (CNR). Using bacterial one hybrid screening and a selected amplification and binding assay we identified the (A/T)(G/C)TT repeat as the core binding sequence of SlZFP2. We further identified a large number of tomato genes containing putative SlZFP2 binding sites in their promoter regions. Chromatin immunoprecipitation and electrophoretic mobility shift assays demonstrated that SIT, FLC and SlAO1 are direct targets of SlZFP2 through binding to their promoter regions. We propose that SlZFP2 represents a novel negative regulator for fine tuning ABA biosynthesis during fruit development and provides a potentially valuable tool for dissecting the role of ABA in fruit ripening.To gain further insight on transcriptome changes regulated by SlZFP2, we sequenced a representative SlZFP2 RNAi line in LA1589 background and its nontransgenic sibling (WT) on a Miseq platform. The RNAi line 207 showed defected fruit set and ABA biosynthesis were chosen for profiling gene expression via RNA sequencing. Its nontransgenic sibling was served as controls. Three biological replicates were conducted.
Project description:The tomato (Solanum lycopersicum) MADS-box transcription factor RIPENING INHIBITOR (RIN) acts as a master regulator of tomato fruit ripening. We previously identified a direct RIN target gene Solyc07g052960, which encodes a putative GRAS family protein belonging to the SHORT-ROOT (SHR) branch, but its role was unknown. RNA interference (RNAi)-mediated gene silencing reduced Solyc07g052960 expression in transgenic fruits, but the fruits appeared to ripen normally. However, the transgenic fruits at the ripening stage showed a marked decrease of the expression levels of several ripening-induced genes, especially involved in cell wall modification and secondary metabolism. This suggests that Solyc07g052960 participates in the regulation of these processes as one component of the RIN-activated transcriptional cascade regulating fruit ripening in tomato.