Project description:Heavy metals have been postulated as significant nitrification inhibitor in wastewater treatment plant. The effect of heavy metals such as Cd2+, Cu2+ and Hg2+ to nitrifying bacterium, Nitrosomonas europaea, was studied in pseudo-steady state batch reactor. Under incubation of Nitrosomonas europaea with 1 ?M CdCl2 for 1 hour, transcripts for 66 of 2460 genes were found at high level, yet transcripts of 50 genes were found at low level. Mercury resistance genes (merACDPT) showed 277-fold up regulation. Keywords: cadmium, stress response, global transcription, mercury resistance genes, merA,
Project description:The effects of the aromatic hydrocarbons benzene and toluene on Nitrosomonas europaea, a nitrifying bacterium that plays an important role in the removal of nitrogen from wastewater treatment plants, were studied in batch reactors. Exposure to 20 M toluene and 40 M benzene resulted in a 50% reduction in nitrifying activity after 1 h. However, Affymetrix microarray experiments detected no significant changes in gene expression in toluene exposed cells. Cells exposed to benzene were found to up-regulate a gene cluster (NE 1545 - NE 1551). This gene cluster appears to be involved with fatty-acid metabolism, lipid and membrane protein biosynthesis. TEM experiments reveal that cells exposed to benzene decrease the thickness of their membrane and the membrane becomes more structured. Keywords: stress response, benzene, toluene
Project description:Investigation of the whole genome gene expression level changes relative to exponential phase growth in Nitrosomonas europaea ATCC19718 after 12 hours ammonia starvation, 144 hours ammonia starvation, and 20 minutes following ammonia addition to starved cells. The ammonia monooxygenase of chemolithotrophic ammonia oxidizing bacteria (AOB) catalyzes the first step in ammonia oxidation by converting ammonia to hydroxylamine. The monooxygenase of Nitrosomonas europaea is encoded by two nearly identical operon copies (amoCAB1,2). Several AOB, including N. europaea, also posess a divergent monocistronic copy of amoC (amoC3) of unknown function. Previous work suggested a possible functional role for amoC3 in N. europaea during recovery from extended ammonia starvation as part of the σE- stress response regulon during the recovery of N. europaea from extended ammonia starvation, thus indicating its importance during the exit of cells from starvation. We here used global transcription analysis to show that expression of amoC3 is part of a general post-starvation cellular response system in N. europaea. We also found that amoC3 is required for efficient exit from prolonged ammonia starvation, as deleting this gene impaired growth at elevated temperatures and recovery following starvation under high oxygen tensions. Deletion of the σ32 global stress response regulator demonstrated that the heat shock regulon also plays a significant role in mediating the recovery of N. europaea from starvation. These findings provide the first described phenotype associated with the divergent AmoC3 subunit which appears to function as a stress responsive subunit capable of maintaining ammonia oxidation activity under stress conditions.
Project description:Heavy metals have been postulated as significant nitrification inhibitor in wastewater treatment plant. The effect of heavy metals such as Cd2+, Cu2+ and Hg2+ to nitrifying bacterium, Nitrosomonas europaea, was studied in pseudo-steady state batch reactor. Under incubation of Nitrosomonas europaea with 1 ?M CdCl2 for 1 hour, transcripts for 66 of 2460 genes were found at high level, yet transcripts of 50 genes were found at low level. Mercury resistance genes (merACDPT) showed 277-fold up regulation. Keywords: cadmium, stress response, global transcription, mercury resistance genes, merA, The 1 uM CdCl2 caused more than 50 % inhibition in physiological response for 1 hour incubation. Transcriptional levels of the cells inhibited by cadmium were compared with the cells under control condition.
Project description:Investigation of the whole genome gene expression level changes relative to exponential phase growth in Nitrosomonas europaea ATCC19718 after 12 hours ammonia starvation, 144 hours ammonia starvation, and 20 minutes following ammonia addition to starved cells. The ammonia monooxygenase of chemolithotrophic ammonia oxidizing bacteria (AOB) catalyzes the first step in ammonia oxidation by converting ammonia to hydroxylamine. The monooxygenase of Nitrosomonas europaea is encoded by two nearly identical operon copies (amoCAB1,2). Several AOB, including N. europaea, also posess a divergent monocistronic copy of amoC (amoC3) of unknown function. Previous work suggested a possible functional role for amoC3 in N. europaea during recovery from extended ammonia starvation as part of the σE- stress response regulon during the recovery of N. europaea from extended ammonia starvation, thus indicating its importance during the exit of cells from starvation. We here used global transcription analysis to show that expression of amoC3 is part of a general post-starvation cellular response system in N. europaea. We also found that amoC3 is required for efficient exit from prolonged ammonia starvation, as deleting this gene impaired growth at elevated temperatures and recovery following starvation under high oxygen tensions. Deletion of the σ32 global stress response regulator demonstrated that the heat shock regulon also plays a significant role in mediating the recovery of N. europaea from starvation. These findings provide the first described phenotype associated with the divergent AmoC3 subunit which appears to function as a stress responsive subunit capable of maintaining ammonia oxidation activity under stress conditions. A twelve chip study using total RNA recovered from four timepoints for each of three biological replicates of wild-type cultures of Nitrosomonas europaea ATCC 19718. Total RNA was obtained from each biological culture replicate during exponential growth, following 12 hours ammonia starvation, 144 hours ammonia starvations, and 20 minutes following ammonia addition to starved cells.