Project description:DNA oligonucleotide microarrays were designed with 307 probes for 96 internal transcribed spacer (ITS1, located between 18S and 26S rRNA genes) sequences of known species and strains from the genus Pseudo-nitzschia (Bacillariophyceae). In addition, microarrays also carried 1893 probes targeting ITS1 aequences of marine Crenarchaeota and Alphaproteobacteria of SAR11 clade. In order to assign microarray profiles to Pseudo-nitzschia ribotypes and species and to 'train' the data analysis system, we grew cultures of Pseudo-nitzschia in the laboratory with identities confirmed through rDNA sequence analysis. In total, 9 cultures and 35 environmental water samples were hybridized to microarrays, in some cases, in duplicate or triplicate. Analysis of microarray data allowed us to identify and map Pseudo-nitzschia spp. in the coastal waters along Washington and Oregon coast of the Eastern Pacific Ocean, and to observe seasonal changes in diatom community composition. Total DNA was isolated from 9 Pseudo-nitzschia laboratory cultures and 35 environmental water samples collected during 7 field campaigns in 2007-2009. The environmental samples were collected at distances of 5 to 55 km from the coast, along the following transects in the Pacific Ocean covering over 300 km of the coastline: La Push (LP), Grays Harbor (GH), Columbia River (CR), and Newport Hydroline (NH). The DNA samples were subjected to PCR amplification with the primers specific for ITS1 sequences. The resultant biotin-labeled target samples were analyzed using microarray hybridization with the CombiMatrix ElectraSense 4X2K format. Out of 44 analyzed samples, 40, 2, and 2 were used for single, duplicate and triplicate hybridizations, respectively.
Project description:Gas hydrates, also known as clathrates, are cages of ice-like water crystals encasing gas molecules such as methane (CH4). Despite the global importance of gas hydrates, their microbiomes remain mysterious. Microbial cells are physically associated with hydrates, and the taxonomy of these hydrate-associated microbiomes is distinct from non-hydrate-bearing sites. Global 16S rRNA gene surveys show that members of sub-clade JS-1 of the uncultivated bacterial candidate phylum Atribacteria are the dominant taxa in gas hydrates. The Atribacteria phylogeny is highly diverse, suggesting the potential for wide functional variation and niche specialization. Here, we examined the distribution, phylogeny, and metabolic potential of uncultivated Atribacteria in cold, salty, and high-pressure sediments beneath Hydrate Ridge, off the coast of Oregon, USA, using a combination of 16S rRNA gene amplicon, metagenomic, and metaproteomic analysis. Methods were developed to extract bacterial cellular protein from these sediments, as outlined below. Sample Description Three sediments samples were collected from beneath Hydrate Ridge, off the coast of Oregon, USA. Sediments were cored at ODP site 1244 (44°35.1784´N; 125°7.1902´W; 895 m water depth) on the eastern flank of Hydrate Ridge ~3 km northeast of the southern summit on ODP Leg 204 in 2002 and stored at -80°C at the IODP Gulf Coast Repository. E10H5 sediment is from 68.5 meters below sediment surface interface C1H2 sediment is from 2 meters below sediment surface interface. C3H4 sediment is from 21 meters below sediment surface interface.
Project description:DNA oligonucleotide microarrays were designed with 307 probes for 96 internal transcribed spacer (ITS1, located between 18S and 26S rRNA genes) sequences of known species and strains from the genus Pseudo-nitzschia (Bacillariophyceae). In addition, microarrays also carried 1893 probes targeting ITS1 aequences of marine Crenarchaeota and Alphaproteobacteria of SAR11 clade. In order to assign microarray profiles to Pseudo-nitzschia ribotypes and species and to 'train' the data analysis system, we grew cultures of Pseudo-nitzschia in the laboratory with identities confirmed through rDNA sequence analysis. In total, 9 cultures and 35 environmental water samples were hybridized to microarrays, in some cases, in duplicate or triplicate. Analysis of microarray data allowed us to identify and map Pseudo-nitzschia spp. in the coastal waters along Washington and Oregon coast of the Eastern Pacific Ocean, and to observe seasonal changes in diatom community composition.