Project description:BackgroundThis randomized clinical trial was designed to evaluate osteogenic potential of Cissus quadrangularis in alveolar distraction to facilitate implant installation.Material and methodsTwenty patients with atrophic ridge were treated by alveolar distraction. After completing distractor activation, patients were randomly divided into two equal groups according to administered drug (placebo and Cissus quadrangularis group). After a consolidation period, distractors were removed and implants were inserted. Clinical evaluation was done to assess wound healing, and distractor and implant stability. Histological evaluation was performed at time of implant insertion. Radiographic evaluation was performed to assess bone volume and density after distraction, as well as, density and bone loss around implant.ResultsRadiographic and histological results showed that bone formation and maturation of study group were faster than that of control group. There was a significant increased bone density in distracted area and around implant in study group than control group. A significant bone loss at end of consolidation period, and around implant at end of the study was reported in control group than study group.ConclusionCissus quadrangularis administration during the consolidation period is associated with increased osteogenic potential of distracted bone. The histological and radiographic findings of current study proved that Cissus quadrangularis not only enhances rate of new bone formation, but also bone density to withstand the biomechanical requirements of implant placement in a shorter time. Trial registration This study was retrospectively registered on www.ClinicalTrial.gov : NCT04669795-17\12\2020.
Project description:Cissus quadrangularis (Vitaceae) is a perennial climber endemic to Africa and is characterized by succulent angular stems. The plant grows in arid and semi-arid regions of Africa especially in the African savanna. The stem of C. quadrangularis has a wide range of applications in both human and animal medicine, but there is limited cytogenetic information available for this species. In this study, the chromosome number, genome size, and genome composition for C. quadrangularis were determined. Flow cytometry results indicated that the genome size of C. quadrangularis is approximately 2C = 1.410 pg. Fluorescence microscopy combined with DAPI stain showed the chromosome numbers to be 2n = 48. It is likely that C. quadrangularis has a tetraploid genome after considering the basic chromosome numbers in Cissus genus (n = 10, 11, or 12). A combination of low-throughput genome sequencing and bioinformatics analysis allowed identification and quantification of repetitive elements that make up about 52% of the C. quadrangularis genome, which was dominated by LTR-retrotransposons. Two LTR superfamilies were identified as Copia and Gypsy, with 24% and 15% of the annotated clusters, respectively. The comparison of repeat elements for C. quadrangularis, Vitis vinifera, and four other selected members in the Cissus genus revealed a high diversity in the repetitive element components, which could suggest recent amplification events in the Cissus genus. Our data provides a platform for further studies on the phylogeny and karyotype evolution in this genus and in the family Vitaceae.
Project description:Cissus quadrangularis is a tetraploid species belonging to the Vitaceae family and is known for the Crassulacean acid metabolism (CAM) pathway in the succulent stem, while the leaves perform C3 photosynthesis. Here, we report a high-quality genome of C. quadrangularis comprising a total size of 679.2 Mb which was phased into two subgenomes. Genome annotation identified 51 857 protein-coding genes, while approximately 47.75% of the genome was composed of repetitive sequences. Gene expression ratios of two subgenomes demonstrated that the sub-A genome as the dominant subgenome played a vital role during the drought tolerance. Genome divergence analysis suggests that the tetraploidization event occurred around 8.9 million years ago. Transcriptome data revealed that pathways related to cutin, suberine, and wax metabolism were enriched in the stem during drought treatment, suggesting that these genes contributed to the drought adaption. Additionally, a subset of CAM-related genes displayed diurnal expression patterns in the succulent stems but not in leaves, indicating that stem-biased expression of existing genes contributed to the CAM evolution. Our findings provide insights into the mechanisms of drought adaptation and photosynthesis transition in plants.
Project description:Growing demand in bone tissue replacement has shifted treatment strategy from pursuing traditional autogenous and allogeneic grafts to tissue replacement with bioactive biomaterials. Constructs that exhibit the ability to support the bone structure while encouraging tissue regeneration, integration, and replacement represent the future of bone tissue engineering. The present study aimed to understand the osteogenic and mechanical effects of binder jet 3D printed, porous β-tricalcium phosphate scaffolds modified with a natural polymer/drug coating of polydopamine and Cissus Quadrangularis extract. Compression testing was used to determine the effect the polydopamine coating process had on the mechanical strength of the scaffolds. 3D printed scaffolds with and without polydopamine coatings fractured at 3.88 ± 0.51 MPa and 3.84 ± 1 MPa, respectively, suggesting no detrimental effect on strength due to the coating process. The osteogenic potential of the extract-loaded coating was tested in vitro, under static and dynamic flow conditions, and in vivo in a rat distal femur model. Static osteoblast cultures indicated polydopamine-coated samples with and without the extract exhibited greater proliferation after 3 days (p < 0.05). Similarly, polydopamine resulted in increased proliferation and alkaline phosphatase expression under dynamic flow, but alkaline phosphatase expression was significantly enhanced (p < 0.05) only in samples treated with the extract. Histological analysis of implanted scaffolds showed substantially more new bone growth throughout the implant pores at 4 weeks post-op in polydopamine and extract-loaded implants compared to pure β-tricalcium phosphate. These results indicated that implants coated with polydopamine and Cissus Quadrangularis extract facilitated osteoblast proliferation and alkaline phosphatase production and improved early bone formation and ingrowth while maintaining mechanical strength.
Project description:Low-pass sequencing (sequencing a genome to an average depth less than 1× coverage) combined with genotype imputation has been proposed as an alternative to genotyping arrays for trait mapping and calculation of polygenic scores. To empirically assess the relative performance of these technologies for different applications, we performed low-pass sequencing (targeting coverage levels of 0.5× and 1×) and array genotyping (using the Illumina Global Screening Array (GSA)) on 120 DNA samples derived from African and European-ancestry individuals that are part of the 1000 Genomes Project. We then imputed both the sequencing data and the genotyping array data to the 1000 Genomes Phase 3 haplotype reference panel using a leave- one-out design. We evaluated overall imputation accuracy from these different assays as well as overall power for GWAS from imputed data, and computed polygenic risk scores for coronary artery disease and breast cancer using previously derived weights. We conclude that low-pass sequencing plus imputation, in addition to providing a substantial increase in statistical power for genome wide association studies, provides increased accuracy for polygenic risk prediction at effective coverages of ∼ 0.5× and higher compared to the Illumina GSA.
Project description:BACKGROUND:Cissus quadrangularis Linn. (CQ) has been used in Indian and Thai traditional medicine for healing bone fractures because of numerous active ingredients in CQ. It is still unclear which compounds are the active ingredients for bone formation. METHODS:The molecular docking technique, the ethanolic extraction along with hexane fractionation, and an in vitro experiment with a human osteoblast cell line (MG-63) were used to narrow down the active compounds, to prepare the CQ extract, and to test biological activities, respectively. RESULTS:The molecular docking technique revealed that quercetin and ?-sitosterol had highest and lowest potential to bind to estrogen receptors, respectively. Compared to the crude ethanol extract (P1), the ethanolic fraction (P2) was enriched with rutin and quercetin at 65.36?±?0.75 and 1.06?±?0.12?mg/g, respectively. Alkaline phosphatase (ALP) activity was significantly enhanced in osteoblasts exposed to the P2 in both tested concentrations. The amount of hydroxyproline was slightly increased in the P1 treatment, while osteocalcin was inhibited. Moreover, the P2 significantly activated osteoprotegerin (OPG) and inhibited receptor activator of nuclear factor ? ligand (RANKL) expression. CONCLUSIONS:Taken together, the enriched rutin and quercetin fraction of CQ triggered the molecules involved in bone formation and the molecules inhibiting bone resorption.