Project description:Identification and validation of potential prognostic biomarkers in older ovarian cancer patients with high-grade serous adenocarcinoma (HGSC)
Project description:Ovarian cancer is the leading cause of death in gynecological diseases, and has been considered as one of the most fatal cancers due to lack of reliable detection strategy in the early stage. Therefore the capability to detect the morbidity initiation with an sensitive and effective approach is one of the most desirable goals for curing ovarian cancer. In this study, we used microarray technology for salivary mRNA biomarkers discovery, and evaluated the performance and translational utilities of discovered markers from a clinical study using an independent sample cohort . We used microarrays to profile and compare the gene expressions between ovairan cancer patient and matched controls, and identified seven down-regulated genes after the validation study. To find salivary transcriptomic biomarkers for ovarian cancer, salivary transcriptomes in 11 ovarian cancer patients and 11 matched controls were profiled using Affymetrix HG-U133-Plus-2.0 array, and followed by t-test and fold-change analyses. The biomarker candidates selected from the microarray results were subjected to clinical validation using an independent sample cohort by RT-qPCR. The prediction power of biomarkers was analyzed by logistic regression approach
Project description:The paper describes a model on the detection of cancer based on cancer and immune biomarkers.
Created by COPASI 4.25 (Build 207)
This model is described in the article:
Improving cancer detection through combinations of cancer and immune biomarkers: a modelling approach
Raluca Eftimie and and Esraa Hassanein
J Transl Med (2018) 16:73
Abstract:
Background: Early cancer diagnosis is one of the most important challenges of cancer research, since in many can- cers it can lead to cure for patients with early stage diseases. For epithelial ovarian cancer (which is the leading cause of death among gynaecologic malignancies) the classical detection approach is based on measurements of CA-125 biomarker. However, the poor sensitivity and specificity of this biomarker impacts the detection of early-stage cancers.
Methods: Here we use a computational approach to investigate the effect of combining multiple biomarkers for ovarian cancer (e.g., CA-125 and IL-7), to improve early cancer detection.
Results: We show that this combined biomarkers approach could lead indeed to earlier cancer detection. However, the immune response (which influences the level of secreted IL-7 biomarker) plays an important role in improving and/or delaying cancer detection. Moreover, the detection level of IL-7 immune biomarker could be in a range that would not allow to distinguish between a healthy state and a cancerous state. In this case, the construction of solu- tion diagrams in the space generated by the IL-7 and CA-125 biomarkers could allow us predict the long-term evolu- tion of cancer biomarkers, thus allowing us to make predictions on cancer detection times.
Conclusions: Combining cancer and immune biomarkers could improve cancer detection times, and any predic- tions that could be made (at least through the use of CA-125/IL-7 biomarkers) are patient specific.
Keywords: Ovarian cancer, Mathematical model, CA-125 biomarker, IL-7 biomarker, Cancer detection times
This model is hosted on BioModels Database and identified by: MODEL1907050002.
To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models.
To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide.
Please refer to CC0 Public Domain Dedication for more information.
Project description:Introduction: Serous ovarian cancer is the leading cause of gynecological cancers, with a 5-year survival rate below 45% due in part to the nonspecific symptoms and lack of accurate screening for early detection. In comparison, patients diagnosed at an early stage have a five-year survival rate of 92%, demonstrating the urgent need for biomarkers for the early detection of disease. Serum from patients with serous ovarian cancer contain antibodies to tumor antigens that are potential biomarkers for early detection. The purpose of this study is to identify a panel of novel serum autoantibody (AAb) biomarkers for the early diagnosis of serous ovarian cancer. Methods: To detect AAb we probed high-density programmable protein microarrays (NAPPA) containing 10,247 antigens with sera from patients with serous ovarian cancer (n = 30 cases/ 30 healthy controls) and measured bound IgG. We identified 735 promising tumor antigens using cutoff values of 10% sensitivity at 95% specificity and K-value>0.8, as well as visual analysis and evaluated these with an independent set of serous ovarian cancer sera (n = 30 cases/ 30 benign disease controls/ 30 heathy controls). Thirty-nine potential tumor autoantigens were identified with sensitivities ranging from 3 to 39.7% sensitivity at 95% specificity and were retested using an orthogonal programmable ELISA assay. A total of 13 potential tumor antigens were identified for further validation using an independent ovarian cancer sera set (n = 44 cases/ 34 healthy controls). Sensitivities at 95% specificity were calculated and a serous ovarian cancer classifier was constructed. In addition, we evaluated a longitudinal study using blinded serous pre-diagnostic ovarian cancer sera (n = 9 cases/ 90 controls) to examine the value of three (CTAG1, CTAG2, and p53) of these AAb in comparison to CA 125. Results: We identified 11-AAbs (ICAM3, CTAG2, p53, STYXL1, PVR, POMC, NUDT11, TRIM39, UHMK1, KSR1, and NXF3) that distinguished serous ovarian cancer cases from healthy controls with a combined 45% sensitivity at 100% specificity. In our longitudinal analysis, p53- and CTAG-AAb were detected up to 9 months prior to ovarian cancer diagnosis and increased with CA 125 levels. Conclusion: These are potential circulating biomarkers for the early detection of serous ovarian cancer, and warrant confirmation in larger clinical cohorts. In addition, p53- and CTAG1/2-AAb are detected in a subset of women with ovarian cancer up to 9 months prior to clinical diagnosis. Their utility as a biomarker for early detection, beyond CA 125, warrant further investigation.
Project description:Introduction: Serous ovarian cancer is the leading cause of gynecological cancers, with a 5-year survival rate below 45% due in part to the nonspecific symptoms and lack of accurate screening for early detection. In comparison, patients diagnosed at an early stage have a five-year survival rate of 92%, demonstrating the urgent need for biomarkers for the early detection of disease. Serum from patients with serous ovarian cancer contain antibodies to tumor antigens that are potential biomarkers for early detection. The purpose of this study is to identify a panel of novel serum autoantibody (AAb) biomarkers for the early diagnosis of serous ovarian cancer. Methods: To detect AAb we probed high-density programmable protein microarrays (NAPPA) containing 10,247 antigens with sera from patients with serous ovarian cancer (n = 30 cases/ 30 healthy controls) and measured bound IgG. We identified 735 promising tumor antigens using cutoff values of 10% sensitivity at 95% specificity and K-value>0.8, as well as visual analysis and evaluated these with an independent set of serous ovarian cancer sera (n = 30 cases/ 30 benign disease controls/ 30 heathy controls). Thirty-nine potential tumor autoantigens were identified with sensitivities ranging from 3 to 39.7% sensitivity at 95% specificity and were retested using an orthogonal programmable ELISA assay. A total of 13 potential tumor antigens were identified for further validation using an independent ovarian cancer sera set (n = 44 cases/ 34 healthy controls). Sensitivities at 95% specificity were calculated and a serous ovarian cancer classifier was constructed. In addition, we evaluated a longitudinal study using blinded serous pre-diagnostic ovarian cancer sera (n = 9 cases/ 90 controls) to examine the value of three (CTAG1, CTAG2, and p53) of these AAb in comparison to CA 125. Results: We identified 11-AAbs (ICAM3, CTAG2, p53, STYXL1, PVR, POMC, NUDT11, TRIM39, UHMK1, KSR1, and NXF3) that distinguished serous ovarian cancer cases from healthy controls with a combined 45% sensitivity at 100% specificity. In our longitudinal analysis, p53- and CTAG-AAb were detected up to 9 months prior to ovarian cancer diagnosis and increased with CA 125 levels. Conclusion: These are potential circulating biomarkers for the early detection of serous ovarian cancer, and warrant confirmation in larger clinical cohorts. In addition, p53- and CTAG1/2-AAb are detected in a subset of women with ovarian cancer up to 9 months prior to clinical diagnosis. Their utility as a biomarker for early detection, beyond CA 125, warrant further investigation.
Project description:Introduction: Serous ovarian cancer is the leading cause of gynecological cancers, with a 5-year survival rate below 45% due in part to the nonspecific symptoms and lack of accurate screening for early detection. In comparison, patients diagnosed at an early stage have a five-year survival rate of 92%, demonstrating the urgent need for biomarkers for the early detection of disease. Serum from patients with serous ovarian cancer contain antibodies to tumor antigens that are potential biomarkers for early detection. The purpose of this study is to identify a panel of novel serum autoantibody (AAb) biomarkers for the early diagnosis of serous ovarian cancer. Methods: To detect AAb we probed high-density programmable protein microarrays (NAPPA) containing 10,247 antigens with sera from patients with serous ovarian cancer (n = 30 cases/ 30 healthy controls) and measured bound IgG. We identified 735 promising tumor antigens using cutoff values of 10% sensitivity at 95% specificity and K-value>0.8, as well as visual analysis and evaluated these with an independent set of serous ovarian cancer sera (n = 30 cases/ 30 benign disease controls/ 30 heathy controls). Thirty-nine potential tumor autoantigens were identified with sensitivities ranging from 3 to 39.7% sensitivity at 95% specificity and were retested using an orthogonal programmable ELISA assay. A total of 13 potential tumor antigens were identified for further validation using an independent ovarian cancer sera set (n = 44 cases/ 34 healthy controls). Sensitivities at 95% specificity were calculated and a serous ovarian cancer classifier was constructed. In addition, we evaluated a longitudinal study using blinded serous pre-diagnostic ovarian cancer sera (n = 9 cases/ 90 controls) to examine the value of three (CTAG1, CTAG2, and p53) of these AAb in comparison to CA 125. Results: We identified 11-AAbs (ICAM3, CTAG2, p53, STYXL1, PVR, POMC, NUDT11, TRIM39, UHMK1, KSR1, and NXF3) that distinguished serous ovarian cancer cases from healthy controls with a combined 45% sensitivity at 100% specificity. In our longitudinal analysis, p53- and CTAG-AAb were detected up to 9 months prior to ovarian cancer diagnosis and increased with CA 125 levels. Conclusion: These are potential circulating biomarkers for the early detection of serous ovarian cancer, and warrant confirmation in larger clinical cohorts. In addition, p53- and CTAG1/2-AAb are detected in a subset of women with ovarian cancer up to 9 months prior to clinical diagnosis. Their utility as a biomarker for early detection, beyond CA 125, warrant further investigation.
Project description:Diagnosis of ovarian cancer at an early stage is the most important determinant of survival. Thus, there is a clear need for novel biomarkers to improve diagnostic and prognostics that may better inform on therapeutic strategies. We have conducted a discovery study using label-free quantitative mass spectrometry (LFQ) to identify potential biomarker candidates in urine from individual ovarian cancer patients. LFQ analyses identified 4394 proteins (16397 peptides) in urine samples (n=20), 23 of which were significantly elevated in the malignant patient group compared to patients with benign disease. To validate these changes, we used Parallel Reaction Monitoring (PRM) to investigate their abundance in an independent cohort (n=20) of patient urine samples. Seven of the ten proteins were significantly enriched in the ovarian cancer patient samples; amongst these were established ovarian cancer markers WFDC2 (HE4) and Mesothelin (MSLN), validating our approach. This is the first application of a LFQ-PRM workflow to identify and validate ovarian cancer-specific biomarkers in urine samples.
Project description:The Japanese Serous Ovarian Cancer Study Group Advanced-stage ovarian cancer is one of the most lethal gynecologic malignancies. To improve prognosis of patients with ovarian cancers, a predictive biomarkers leading to personalized treatments are required. In this large-scale cross-platform study of six microarray datasets consisting of 1054 ovarian cancer patients, we developed a novel risk classification system based on a 126-gene expression signature for predicting overall survival by applying elastic net7 and 10-fold cross validation to a Japanese dataset A (n = 260). We further validated its predictive ability with the five other datasets using multivariate analysis. Also, through gene ontology and pathway analyses of 1109 high-risk ovarian cancer specific transcripts, we identified a significant reduction of expression of immune-response related genes, especially on the antigen presentation pathway. Furthermore, an immunohistochemical analysis demonstrated that the number of CD8 T lymphocytes infiltrating into tumor tissue was significantly decreased in high-risk ovarian cancers. These predictive biomarkers based on the 126-gene expression signature will identify high-risk ovarian cancer patients who need novel immune-activating therapeutic approaches, leading to improved outcomes for such patients. Two hundred sixty patients who were diagnosed as advanced-stage high-grade serous ovarian cancer were analyzed in this study. Microaray data from 10 patients who were diagnosed as advanced-stage high-grade serous ovarian cancer were analyzed to investigate coefficient of correlation in each probes between Agilent Whole Human Genome Oligo Microarray and Affymetrix HG-U133Plus2.0.
Project description:Advanced-stage ovarian cancer is one of the most lethal gynecologic malignancies. To improve prognosis of patients with ovarian cancers, a predictive biomarkers leading to personalized treatments are required. In this large-scale cross-platform study of six microarray datasets consisting of 1054 ovarian cancer patients, we developed a novel risk classification system based on a 126-gene expression signature for predicting overall survival by applying elastic net7 and 10-fold cross validation to a Japanese dataset A (n = 260). We further validated its predictive ability with the five other datasets using multivariate analysis. Also, through gene ontology and pathway analyses of 1109 high-risk ovarian cancer specific transcripts, we identified a significant reduction of expression of immune-response related genes, especially on the antigen presentation pathway. Furthermore, an immunohistochemical analysis demonstrated that the number of CD8 T lymphocytes infiltrating into tumor tissue was significantly decreased in high-risk ovarian cancers. These predictive biomarkers based on the 126-gene expression signature will identify high-risk ovarian cancer patients who need novel immune-activating therapeutic approaches, leading to improved outcomes for such patients. 40 patients who were diagnosed as advanced-stage high-grade serous ovarian cancer were recruited in this study.