Project description:Background: Liver cancer is the third deadliest type of cancer, posing a serious threat to human health. Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer. C. sinensis, classified as a definite group I carcinogen by the IARC (International Agency for Research on Cancer), is an important risk factor for HCC. Although many studies have shown that C. sinensis infection affects the prognosis of HCC patients, the specific mechanisms are still unclear, especially the dynamics and regulatory roles of chromatin accessibility. Results: In this study, we integrated ATAC-seq, RNA-seq, and ChIP-seq data to elucidate changes in the epigenetics of HCC after the C. sinensis infection. Many different accessibility regions (DARs) were identified both in tumors and adjacent tissue after the C. sinensis infection. Meanwhile, top TFs whose motifs were enriched in DAR were found, such as HNF4a, FOXI1, etc. Although there were slight deviations, epigenetic changes were found to be consistent with gene expression levels. We also revealed that H3K9ac, H3K4me2, H3K4me3, H3K27ac, and H3K4me1 were associated with chromatin accessibility. Importantly, we also found potential evidence that C. sinensis infection would alter the spatial structure of the HCC genome. Finally, both molecular experimental results and clinical data certified that C. sinensis infection would promote the metastasis of HCC. Conclusions: C. sinensis infection will remodel the chromatin accessibility of HCC, leading to changes in gene expression levels. This study provides conclusive evidence that C. sinensis infection alters the epigenetics of HCC.
Project description:Kawasaki Disease (KD) is a multisystemic vasculitis of unknown etiology in children. The incidence of KD varies by geographic area and correlates with differences in gut microbiota patterns, with the highest incidence in Asian. This study aimed to investigate alterations in fecal microbiota and assess their relationship with systemic inflammation in KD patients. A total of 59 patients and 55 matched controls were included. Fecal samples were collected at the onset of KD. The V3/V4 regions of 16S rDNA were sequenced using the MiSeq platform. PICRUSt 2 was used to analyze the potential functional pathways involved in gut dysbiosis. Alpha (p<0.042) and beta (p<0.001) diversity in KD were significantly decreased when compared to the control group. After multivariate regression, among the seven critical microbes, increased Bacteroides ovtaus (p=0.016) and decreased Eggerthella lenta (p=0.014) could also predict KD risk using receiver operating characteristic curve (ROC) analysis (Eggerthella lenta: area under the ROC curve, AUC=0.841, odds ratio=23.956; Bacteroides ovatus: AUC=0.816, odds ratio=31.365). Notably, Bacteroides ovatus was positively correlated with blood segment cells (p=0.006), but negatively correlated with blood lymphocytes (p=0.013). After multivariate regression, flavone and flavonol biosynthesis decreased in children with KD (p<0.001). Our results indicated that both Bacteroides ovatus and Eggerthella lenta may deregulate flavone and flavonol biosynthesis, consequently modulating immune cells and potentially triggering KD. This study suggests that alterations in the gut microbiota are closely associated with immune responses and provides a new perspective on the etiology, pathogenesis, and treatment of KD.
Project description:We investigate the global miRNA expression profile of An. sinensis using illumine Hiseq 2000 sequencing.The annotation and prediction of miRNAs lays the foundation for the further functional study of An. sinensis miRNAs and will facilitate their application in vector control.