Project description:We cultured MCF10a-Snail-ER cells and induced EMT initiation with tamoxifen. A matched sequencing of their PolyA RNA was performed, using Illumina and direct RNA Oxford Nanopore sequencing technologies. Both generated datasets supported the development of hybrid bioinformatics tools.
Project description:Snail and Twist are two EMT inducer, expression of Snail or Twist will induce EMT in HMLE and MCF10A cells. By introducing Snail or Twist in HMLE and MCF10A cells, which lack the expression of these two proteins, will identify the genes are induced during EMT. We used microarray analysis to compare the gene expression profiles between the mammamry epithleial cells and the cells undergone EMT.
Project description:Multiple EMT-promoting/inhibiting transcription factors have been identified including Snail, Zeb1 and Ovol2. To understand differential roles of these factors, we performed gene expression profiling by RNA-seq upon Snail-/Zeb1-induced EMT or Ovol2-induced MET in human mammary epithelial MCF10A cells.
Project description:EMT, Epithelial to mesenchymal transition is a developmental biology process associated with migration, known to be involved in cancer metastasis. To study this process, we used the breast epithelial cell line MCF10A that enter in EMT after treatment with the cytokine TGFB or by expression of EMT transcriptor factor SNAIL.
Project description:Epithelial-Mesenchymal Transition (EMT) is thought to contribute to cancer metastasis, but its underlying mechanisms are not well understood. To define early steps in this cellular transformation, we analyzed human mammary epithelial cells with tightly regulated expression of Snail-1, a master regulator of EMT. Following Snail-1 induction, epithelial markers were repressed within 6 hours and mesenchymal genes induced at 24 hours. Snail-1 binding to its target promoters was transient (6-48 hours) despite continued protein expression and it was followed by both transient and long-lasting chromatin changes. To generate a potent reversible EMT-inducing stimulus, we created a Snail-1 retroviral expression construct, using a fused estrogen receptor (ER) response element to mediate regulation by exogenous 4-hydroxy-tamoxifen (4-OHT). Since Snail-1 protein stability and nuclear localization are suppressed by GSK3-beta-mediated phosphorylation, we substituted the six targeted amino acids (ER-Snail-1(6SA)), thus conferring constitutive activity to the induced protein (Zhou et al., 2004, Pubmed ID 15448698). Infection of non-transformed, immortalized human mammary epithelial MCF10A cells with ER-Snail-1(6SA), followed by treatment with 4-OHT, triggered morphological and biomarker characteristics of EMT. At 0, 6, 48 and 120 hours after beginning exposure to 4-OHT in ethanol (or, for controls, ethanol only) we ChIPed Snail-1 and 6 histone marks. We perfomed two replicates of each, except we only had one replicate of H3K27Me3 at 6 hours.
Project description:Epithelial-Mesenchymal Transition (EMT) is thought to contribute to cancer metastasis, but its underlying mechanisms are not well understood. To define early steps in this cellular transformation, we analyzed human mammary epithelial cells with tightly regulated expression of Snail-1, a master regulator of EMT. Following Snail-1 induction, epithelial markers were repressed within 6 hours and mesenchymal genes induced at 24 hours. Snail-1 binding to its target promoters was transient (6-48 hours) despite continued protein expression and it was followed by both transient and long-lasting chromatin changes. To generate a potent reversible EMT-inducing stimulus, we created a Snail-1 retroviral expression construct, using a fused estrogen receptor (ER) response element to mediate regulation by exogenous 4-hydroxy-tamoxifen (4-OHT). Since Snail-1 protein stability and nuclear localization are suppressed by GSK3-beta-mediated phosphorylation, we substituted the six targeted amino acids (ER-Snail-1(6SA)), thus conferring constitutive activity to the induced protein (Zhou et al., 2004, Pubmed ID 15448698). Infection of non-transformed, immortalized human mammary epithelial MCF10A cells with ER-Snail-1(6SA), followed by treatment with 4-OHT, triggered morphological and biomarker characteristics of EMT. At 3, 6, 12, 24, 72 and 120 hours after beginning exposure to 4-OHT in ethanol (or, for controls, ethanol only) we extracted RNA and did gene expression analysis using microarrays. We perfomed three replicates of each.
Project description:Transcriptional profiling of mouse 4T1 breast cancer cells stably tranduced with pLEX-MCS based lentivirus. Three groups were compared, Vector cells, SNAIL expressing cells; and SNAIL+FBXO11 expressing cells. SNAIL expression induced strong EMT phenotype while SNAIL/FBXO11 reversed cells back to epithelial cells.
Project description:The significance of epithelial-to-mesenchymal transition (EMT)-inducing transcription factors in the onset of non-small cell lung cancer has not been resolved. Here, we report increased Snail expression in pulmonary premalignant lesions relative to histologically normal-appearing pulmonary epithelium. Utilizing immortalized human pulmonary epithelial cells and isogenic derivatives, we document Snail-dependent anchorage-independent growth of the epithelial cells in vitro, as well as transformation, primary tumor growth, and metastatic behavior in vivo. Epithelial splicing regulatory protein 1 (ESRP1) tumor suppressor silencing was a requirement for Snail-driven transformation in vivo, and we identified ESRP1 loss in Snail-expressing pulmonary premalignant lesions in situ. Snail drives these and other carcinogenic signaling programs in an ALDH+CD44+CD24- pulmonary stem cell subset in which ESRP1 and stemness-repressing micro-RNAs are inhibited.
Project description:The significance of epithelial-to-mesenchymal transition (EMT)-inducing transcription factors in the onset of non-small cell lung cancer has not been resolved. Here, we report increased Snail expression in pulmonary premalignant lesions relative to histologically normal-appearing pulmonary epithelium. Utilizing immortalized human pulmonary epithelial cells and isogenic derivatives, we document Snail-dependent anchorage-independent growth of the epithelial cells in vitro, as well as transformation, primary tumor growth, and metastatic behavior in vivo. Epithelial splicing regulatory protein 1 (ESRP1) tumor suppressor silencing was a requirement for Snail-driven transformation in vivo, and we identified ESRP1 loss in Snail-expressing pulmonary premalignant lesions in situ. Snail drives these and other carcinogenic signaling programs in an ALDH+CD44+CD24- pulmonary stem cell subset in which ESRP1 and stemness-repressing micro-RNAs are inhibited.