Project description:This research work investigates the expression of the genes involved in flavor compound production in two hybrids between Saccharomyces cerevisiae and S. kudriavzevii under low (12°C) and moderate fermentation temperatures (28°C).
Project description:During fermentation Saccharomyces yeast produces various aroma-active metabolites determining the different characteristics of aroma and taste in fermented beverages. Amino acid utilization by yeast during brewer´s wort fermentation is seen as linked to flavour profile. To better understand the relationship between the biosynthesis of aroma relevant metabolites and the importance of amino acids, DNA microarrays were performed for Saccharomyces cerevisiae strain S81 and Saccharomyces pastorianus var. carlsbergensis strain S23, respectively. Thereby, changes in transcription of genes were measured, which are associated with amino acid assimilation and its derived aroma-active compounds during fermentation.
Project description:In this work, we evaluated the genetic stabilization process, of the intra- (Saccharomyces cerevisiae) and interspecific (S. cerevisiae x Saccharomyces kudriavzevii) hybrids obtained by different non-GMO techniques, under fermentative conditions. Large-scale transitions in genome size, detected by measuring total DNA content, and genome reorganizations in both nuclear and mitochondrial DNA, evidenced by changes in molecular markers, were observed during the experiments. Interspecific hybrids seem to need fewer generations to reach genetic stability than intraspecific hybrids. The largest number of molecular patterns among the derived stable colonies was observed for intraspecific hybrids, particularly for those obtained by rare-mating in which the total amount of initial DNA was larger. Finally, a representative intraspecific stable hybrid underwent a normal industrial process to obtain active dry yeast production as an important point at which inducing changes in genome composition was possible. No changes in hybrid genetic composition after this procedure were confirmed by comparative genome hybridization. According to our results, fermentation steps 2 and 5 –comprising between 30 and 50 generations- suffice to obtain genetically stable interspecific and intraspecific hybrids, respectively. This work aimed to develop and validate a fast genetic stabilization method for newly generated Saccharomyces hybrids under selective enological conditions. A comparison of the whole stabilization process in intra- and interspecific hybrids showing different ploidy levels, as a result of using different hybridization methodologies, was also made.
Project description:During fermentation Saccharomyces yeast produces various aroma-active metabolites determining the different characteristics of aroma and taste in fermented beverages. Amino acid utilization by yeast during brewer´s wort fermentation is seen as linked to flavour profile. To better understand the relationship between the biosynthesis of aroma relevant metabolites and the importance of amino acids, DNA microarrays were performed for Saccharomyces cerevisiae strain S81 and Saccharomyces pastorianus var. carlsbergensis strain S23, respectively. Thereby, changes in transcription of genes were measured, which are associated with amino acid assimilation and its derived aroma-active compounds during fermentation. 48 samples were used in this experiment
Project description:Four hybrid yeast strains isolated from a variety of industrial substrates were hybridized to an array-CGH platform containing probes to query the whole genomes of seven different Saccharomyces species. For most of the strains we found evidence of multiple interspecific hybridization events and multiple introgressed regions. The strains queried were GSY205 (isolated from a cider fermentation), GSY505 (a contaminant from a lager beer fermentation), GSY2232 (a commercial wine yeast strain), and GSY312 (a commercial lager beer strain). Additionally, 3 different rare viable spores derived from laboratory-created interspecific S. cerevisiae-S. bayanus (aka S. uvarum) hybrids were queried, before and after evolution in chemostats, via S. cerevisiae-S. bayanus microarrays.
Project description:Xylose-utilizing yeasts with tolerances to fermentation inhibitors (such as weak organic acids) and high temperature are needed for cost-effective simultaneous saccharification and co-fermentation (SSCF) of lignocellulosic materials. We constructed a novel xylose-assimilating Saccharomyces cerevisiae strain with improved fermentation performance under heat and acid co-stress using the genome shuffling technique. Two xylose-utilizing diploid yeasts with different genetic backgrounds were used as the parental strains for genome shuffling. The hybrid strain Hyb-8 showed significantly higher xylose fermentation ability than both parental strains (Sun049T-Z and Sun224T-K) under co-stress conditions of heat and acids. To screen for genes that might be important for fermentation under heat and acid co-stress, a transcriptomic analysis of hybrid strain Hyb-8 and its parental strains was performed.
Project description:In this work, we evaluated the genetic stabilization process, of the intra- (Saccharomyces cerevisiae) and interspecific (S. cerevisiae x Saccharomyces kudriavzevii) hybrids obtained by different non-GMO techniques, under fermentative conditions. Large-scale transitions in genome size, detected by measuring total DNA content, and genome reorganizations in both nuclear and mitochondrial DNA, evidenced by changes in molecular markers, were observed during the experiments. Interspecific hybrids seem to need fewer generations to reach genetic stability than intraspecific hybrids. The largest number of molecular patterns among the derived stable colonies was observed for intraspecific hybrids, particularly for those obtained by rare-mating in which the total amount of initial DNA was larger. Finally, a representative intraspecific stable hybrid underwent a normal industrial process to obtain active dry yeast production as an important point at which inducing changes in genome composition was possible. No changes in hybrid genetic composition after this procedure were confirmed by comparative genome hybridization. According to our results, fermentation steps 2 and 5 –comprising between 30 and 50 generations- suffice to obtain genetically stable interspecific and intraspecific hybrids, respectively. This work aimed to develop and validate a fast genetic stabilization method for newly generated Saccharomyces hybrids under selective enological conditions. A comparison of the whole stabilization process in intra- and interspecific hybrids showing different ploidy levels, as a result of using different hybridization methodologies, was also made. A stable hybrid strain was compared with itself before and after ADY (active dry yeast) production in order to evaluate the genetic stability of this strain.
Project description:Aims: We performed an analysis of maltotriose utilization by 52 Saccharomyces yeast strains able to ferment maltose efficiently and correlated the observed phenotypes with differences in the copy number of genes possibly involved in maltotriose utilization by yeast cells. Methods and Results: The analysis of maltose and maltotriose utilization by laboratory and industrial strains of the species Saccharomyces cerevisiae and Saccharomyces pastorianus (a natural S. cerevisiae/Saccharomyces bayanus hybrid) was carried out using microscale liquid cultivation, as well as in aerobic batch cultures. All strains utilize maltose efficiently as a carbon source, but three different phenotypes were observed for maltotriose utilization: efficient growth, slow/delayed growth and no growth. Through microarray karyotyping and pulsed-field gel electrophoresis blots, we analysed the copy number and localization of several maltose-related genes in selected S. cerevisiae strains. While most strains lacked the MPH2 and MPH3 transporter genes, almost all strains analysed had the AGT1 gene and increased copy number of MALx1 permeases. Conclusions: Our results showed that S. pastorianus yeast strains utilized maltotriose more efficiently than S. cerevisiae strains and highlighted the importance of the AGT1 gene for efficient maltotriose utilization by S. cerevisiae yeasts. Significance and Impact of the Study: Our results revealed new maltotriose utilization phenotypes, contributing to a better understanding of the metabolism of this carbon source for improved fermentation by Saccharomyces yeasts.