Project description:The homeodomain transcription factor SIX1 plays a critical role in embryogenesis, is not expressed in normal adult tissue, but is expressed in many malignancies, including cervical cancer. SIX1 drives the progression of HPV16-immortalized human keratinocytes (HKc/HPV16) toward malignancy: HKc/HPV16 express high levels of SIX1 mRNA and protein; overexpression of SIX1 in HKc/HPV16 produces pre-malignant, differentiation-resistant lines (HKc/DR); SIX1 overexpression in HKc/DR induces tumorigenicity. In this paper, we explore the consequences of inhibition of SIX1 expression in premalignant HKc/DR. Only partial inhibition of SIX1 expression could be obtained in HKc/DR by RNA interference. Decreased SIX1 expression (up to 80%) in HKc/DR resulted in slower proliferation, decreased HPV16-E6/E7 mRNA levels, and increased p53 protein levels. Gene expression changes induced in HKc/DR by anti-SIX1 shRNA were indicative of mesenchymal-epithelial transition (EMT) and changes in TGF-beta signaling. We conclude that HPV16-transformed cells depend on SIX1 for survival, continuous HPV16 E6/E7 gene expression and EMT.
Project description:Six1, Six4 and Myogenin are transcription factors that are known to be required for skeletal myogenesis. Currently, very little is known about the genes targeted by Six1 and Six4. Gene expression profiling when one or both transcription factors were knock-down by siRNA was performed to identify genes affected by their absence. We also hypothesized that Six1 and Six4 can work in cooperation with the myogenic regulatory factor (MRFs) family of transcription factors, such as Myogenin. Therefore, we performed the same type of experiment where the myogenin was knocked-down by siRNA to identify genes that are possibly regulated by the Six1 or Six4 in conjunction with Myogenin.
Project description:Six1, Six4 and Myogenin are transcription factors that are known to be required for skeletal myogenesis. Currently, very little is known about the genes targeted by Six1 and Six4. Gene expression profiling when one or both transcription factors were knock-down by siRNA was performed to identify genes affected by their absence. We also hypothesized that Six1 and Six4 can work in cooperation with the myogenic regulatory factor (MRFs) family of transcription factors, such as Myogenin. Therefore, we performed the same type of experiment where the myogenin was knocked-down by siRNA to identify genes that are possibly regulated by the Six1 or Six4 in conjunction with Myogenin. C2C12 Myoblasts were transfected with siRNA against Six1, Six4, Six1 with Six4, Myogenin, or control 24h before start of differentiation. The cells were allowed to differentiate in differentiation medium for 24h and were harvested for gene expression profiling. Four replicates per siRNA were performed.
Project description:The overexpression of Six1, a member of the Six family of homeodomain transcription factors, has been found in various human cancers, and is associated with tumor progression and metastasis. We previously determined that the expression of Six1 mRNA increased during in vitro progression of human papillomavirus type 16 (HPV16)-immortalized human keratinocytes (HKc/HPV16) toward a differentiation-resistant (HKc/DR) phenotype. However, if Six1 promotes HPV16-mediated transformation or not remains unknown. HKc/DR were transfected with a Six1 or control vector and RNA isolated from these cells were used in an Agilent two-color gene expression profiling experiment. The goal was to determine the effects of Six1 on global gene expression. Two-condition experiment, Six1 vs. Control HKc/DR cells. Biological replicates: 4 Six1-transfected replicates and 4 control-transfected replicates.
Project description:The overexpression of Six1, a member of the Six family of homeodomain transcription factors, has been found in various human cancers, and is associated with tumor progression and metastasis. We previously determined that the expression of Six1 mRNA increased during in vitro progression of human papillomavirus type 16 (HPV16)-immortalized human keratinocytes (HKc/HPV16) toward a differentiation-resistant (HKc/DR) phenotype. However, if Six1 promotes HPV16-mediated transformation or not remains unknown. HKc/DR were transfected with a Six1 or control vector and RNA isolated from these cells were used in an Agilent two-color gene expression profiling experiment. The goal was to determine the effects of Six1 on global gene expression.