Project description:Southern California (USA) populations of the intertidal marine snail Chlorostoma (formerly Tegula) funebralis are generally exposed to higher air and water temperatures than northern California populations. Previous studies have shown that southern populations are more tolerant of heat stress than northern populations. To assess the potential role of gene regulation in these regional differences, we examined transcriptome responses to thermal stress in two southern and two northern populations of C. funebralis. Snails from the four populations were acclimated to a common lab environment, exposed to a heat stress representative of natural low tide conditions, and then analyzed using RNA-Seq to characterize changes in gene expression associated with stress and differences in expression across geographic regions. Changes in expression following stress were dominated by genes involved in apoptosis, the inflammatory response, response to mis and unfolded proteins, and ubiquitination of proteins. Heat shock proteins (Hsps) were up-regulated in both northern and southern populations. However, while the magnitude of the response was significantly greater in northern populations for the majority of Hsp70s, the southern populations showed a greater up-regulation for roughly half of the Hsp40s, which are co-chaperones for Hsp70s. Differential expression analysis of the control versus treatment genes in the northern and southern populations respectively revealed that 56 genes, many involved in the inflammation and immune response, responded to heat stress only in the northern populations. Moreover, several of the molecular chaperones and antioxidant genes that were not differentially expressed in the southern populations instead showed higher constitutive expression under control conditions compared to the northern populations. The expression levels of some of these constitutive genes such as superoxide dismutase were also found to positively correlate with survival following heat stress. This suggests that expression of these genes has evolved a degree of “frontloading” that may contribute to the higher thermal tolerance of southern populations.
Project description:Southern California (USA) populations of the intertidal marine snail Chlorostoma (formerly Tegula) funebralis are generally exposed to higher air and water temperatures than northern California populations. Previous studies have shown that southern populations are more tolerant of heat stress than northern populations. To assess the potential role of gene regulation in these regional differences, we examined transcriptome responses to thermal stress in two southern and two northern populations of C. funebralis. Snails from the four populations were acclimated to a common lab environment, exposed to a heat stress representative of natural low tide conditions, and then analyzed using RNA-Seq to characterize changes in gene expression associated with stress and differences in expression across geographic regions. Changes in expression following stress were dominated by genes involved in apoptosis, the inflammatory response, response to mis and unfolded proteins, and ubiquitination of proteins. Heat shock proteins (Hsps) were up-regulated in both northern and southern populations. However, while the magnitude of the response was significantly greater in northern populations for the majority of Hsp70s, the southern populations showed a greater up-regulation for roughly half of the Hsp40s, which are co-chaperones for Hsp70s. Differential expression analysis of the control versus treatment genes in the northern and southern populations respectively revealed that 56 genes, many involved in the inflammation and immune response, responded to heat stress only in the northern populations. Moreover, several of the molecular chaperones and antioxidant genes that were not differentially expressed in the southern populations instead showed higher constitutive expression under control conditions compared to the northern populations. The expression levels of some of these constitutive genes such as superoxide dismutase were also found to positively correlate with survival following heat stress. This suggests that expression of these genes has evolved a degree of M-bM-^@M-^\frontloadingM-bM-^@M-^] that may contribute to the higher thermal tolerance of southern populations. mRNA profiles of northern and southern California heat-stressed and control C. funebralis were generated by 100bp paired end sequencing, in duplicate, using Illumina HiSeq2000.
Project description:Research on the effects of contaminants on fishes is often conducted on well-studied model test species, whose responses may be different than those of species of conservation concern. We used an oligonucleotide microarray to examine the effects of permethrin, a widely used pyrethroid pesticide, on a critically endangered fish species endemic to Northern California, the delta smelt (Hypomesus transpacificus). These results demonstrate the effects of a widely used pesticide on a sensitive fish species at concentrations below those that affect model test species.
Project description:Research on the effects of contaminants on fishes is often conducted on well-studied model test species, whose responses may be different than those of species of conservation concern. We used an oligonucleotide microarray to examine the effects of permethrin, a widely used pyrethroid pesticide, on a critically endangered fish species endemic to Northern California, the delta smelt (Hypomesus transpacificus). These results demonstrate the effects of a widely used pesticide on a sensitive fish species at concentrations below those that affect model test species. Twenty samples were run on twenty arrays, there were four replicates for each of four permethrin exposure concentrations and a control group.
Project description:LC-MS/MS-based environmental metabolomics from california redtide event from April/May 2020.
Sample were collected in Northern San Diego, extracted by PPL SPE and run by DDA LC-MS/MS (pos/neg)
Project description:The delta smelt (Hypomesus transpacificus) is a pelagic fish species endemic to the Sacramento-San Joaquin Estuary in Northern California, listed as endangered under both the USA Federal and Californian State Endangered Species Acts and acts as an indicator of ecosystem health in its habitat range. Interrogative tools are required to successfully monitor effects of contaminants upon the delta smelt, and to research potential causes of population decline in this species. We used microarray technology to investigate genome-wide effects in 57-day old larvae after a 4-day exposure to ammonia; one of multiple contaminants arising from wastewater treatment plants and agricultural runoff. Genomic assessments were carried out between larvae exposed to 10 mg/L total ammonium; the lowest observed effect concentration (LOEC), and controls.
Project description:The delta smelt (Hypomesus transpacificus) is a pelagic fish species endemic to the Sacramento-San Joaquin Estuary in Northern California, listed as endangered under both the USA Federal and Californian State Endangered Species Acts and acts as an indicator of ecosystem health in its habitat range. Interrogative tools are required to successfully monitor effects of contaminants upon the delta smelt, and to research potential causes of population decline in this species. We used microarray technology to investigate genome-wide effects in 47-day old larvae after a 7-day exposure to ambient water samples from the Sacramento River at a monitoring field station (Hood) situated 8 miles downstream of the Sacramento regional Wastewater Treatment Plant. Genomic assessments were carried out on surviving organisms and contrasted to laboratory controls.