Project description:We report here a methanotroph, Methylotuvimicrobium buryatense 5GB1C, that consumes methane at 500ppm at rates several times higher than any previously published. Analyses of bioreactor-based performance and RNAseq based transcriptomics suggest that this superior ability to utilize low methane is based at least in part on an extremely low non-growth associated maintenance energy and on a 5-fold higher methane specific affinity than previous reports.
Project description:RNA-Seq profiling of Methylomicrobium alcaliphilum strain 20Z grown in batch on methane. The RNA-Seq work is one part of a systems approach to characterizing metabolism of 20Z during growth on methane. We demonstrate that methane assimilation is coupled with a highly efficient pyrophosphate-mediated glycolytic pathway, which under O2 limitation participates in a novel form of fermentation-based methanotrophy. This surprising discovery suggests a novel mode of methane utilization in oxygen-limited environments, and opens new opportunities for a modular approach towards producing a variety of excreted chemical products using methane as a feedstock.
2013-09-25 | GSE51145 | GEO
Project description:Methane reduction through Extruded Linseed
Project description:RNA-Seq profiling of Methylomicrobium alcaliphilum strain 20Z grown in batch on methane. The RNA-Seq work is one part of a systems approach to characterizing metabolism of 20Z during growth on methane. We demonstrate that methane assimilation is coupled with a highly efficient pyrophosphate-mediated glycolytic pathway, which under O2 limitation participates in a novel form of fermentation-based methanotrophy. This surprising discovery suggests a novel mode of methane utilization in oxygen-limited environments, and opens new opportunities for a modular approach towards producing a variety of excreted chemical products using methane as a feedstock. Four replicates of batch growth