Project description:Expression of CXorf67 is an oncogenic mechanism that drives H3K27 hypomethylation in PFA ependymomas by mimicking K27M mutated oncohistones. Background: Posterior fossa A (PFA) ependymomas comprise one out of nine molecular groups of ependymoma. PFA tumors are mainly diagnosed in infants and young children, show a poor prognosis and are characterized by a lack of the repressive histone H3 lysine 27 trimethylation (H3K27me3) mark. Recently, we reported CXorf67 overexpression as hallmark of PFA ependymoma and showed that CXorf67 can interact with EZH2 thereby inhibiting polycomb repressive complex 2 (PRC2), but the mechanism of action remained unclear. Methods: We performed mass spectrometry (MS) and peptide modelling analyses to identify the functional domain of CXorf67 responsible for binding and inhibition of EZH2. Our findings were validated by immunocytochemistry, western blot and methyltransferase assays. Results: We find that the inhibitory mechanism of CXorf67 is similar as in diffuse midline gliomas harboring H3K27M mutations. A small, highly conserved peptide sequence located in the C-terminal region of CXorf67 mimics the sequence of K27M mutated histones and binds to the SET domain of EZH2. This interaction blocks EZH2 methyltransferase activity and inhibits PRC2 function causing de-repression of PRC2 target genes including genes involved in neurodevelopment. Conclusions: Expression of CXorf67 is an oncogenic mechanism that drives H3K27 hypomethylation in PFA tumors by mimicking K27M mutated histones. Disrupting the interaction between CXorf67 and EZH2 may serve as a novel targeted therapy for PFA tumors but also for other tumors that overexpress CXorf67. Based on its function, we have renamed CXorf67 into EZH Inhibitory Protein (EZHIP).
Project description:Posterior fossa A (PFA) ependymomas comprise one out of nine molecular groups of ependymoma. PFA tumors are mainly diagnosed in infants and young children, show a poor prognosis and are characterized by a lack of the repressive histone H3 lysine 27 trimethylation (H3K27me3) mark. Recently, we reported CXorf67 overexpression as hallmark of PFA ependymoma and showed that CXorf67 can interact with EZH2 thereby inhibiting polycomb repressive complex 2 (PRC2). Here, we report that the inhibitory mechanism of this interaction is similar as in diffuse midline gliomas harboring H3K27M mutations. A small, highly conserved peptide sequence located in the C-terminal region of CXorf67 mimics the H3K27M peptide and binds to the SET domain of EZH2. This interaction blocks EZH2 methyltransferase activity and causes H3K27 hypomethylation, an oncogenic mechanism that may be exploited for targeted therapy in PFA ependymoma. Based on its function, we have renamed CXorf67 into EZH2 Inhibitory Protein (EZHIP).
Project description:Childhood brain tumor ependymoma remains incurable in approximately 50 percent of cases. No oncogenic mechanism has been firmly established for the commonest ependymoma variant posterior fossa subgroup A (PFA), impeding clinical advances. Uncovering how heterogeneous cell types within the tumor microenvironment interact is crucial to a complete understanding of PFA disease progression. The underlying cellular components of the PFA tumor microenvironment have been revealed by single cell transcriptomics, identifying divergent epithelial differentiation and EMT lineages. Here we utilize spatial transcriptomics (Visium) of 14 PFA samples to chart neoplastic and immune cell architecture and identify novel biological processes.
Project description:Hi-C and RNA-seq for a large cohort of pediatric brain tumors including ependymoma (PFA, PFB, Ste, spinal), medulloblastoma (G3, G4, SHH), high grade glioma (H3K27 and H3-WT), pilocytic astrocytoma, and more.
Project description:DNA methylation analysis was perfomed using Infinium EPIC Methylation BeadChip platform on 65 PFA ependymoma patient samples. Resulting .idat files were then uploaded to the molecularneuropathology.org classifier to obtain molecular subgroup and copy number variance. Idat files were batch normalized and background corrected using default settings of the R package ChAMP to obtain GpG methylation beta values for analysis of differentially methylated GpG regions.
Project description:Sequencing data related the PFA ependymoma study (Michealraj et al., Cell 2020), a lethal glial malignancy of the hindbrain found in babies and toddlers.
Project description:DNA methylation analysis was perfomed using Infinium 450K Methylation BeadChip platform on 140 PFA ependymoma patient samples. Resulting .idat files were then uploaded to the molecularneuropathology.org classifier to obtain molecular subgroup and copy number variance. Idat files were batch normalized and background corrected using default settings of the R package ChAMP to obtain GpG methylation beta values for analysis of differentially methylated GpG regions.