Project description:Purpose: Deconstructing the soil microbiome into reduced-complexity functional modules represents a novel method of microbiome analysis. The goals of this study are to confirm differences in transcriptomic patterns among five functional module consortia. Methods: mRNA profiles of 3 replicates each of functional module enrichments of soil inoculum in M9 media with either 1) xylose, 2) n-acetylglucosamine, 3) glucose and gentamycin, 4) xylan, or 5) pectin were generated by sequencing using an Illumina platform (GENEWIZ performed sequencing). Sequence reads that passed quality filters were aligned to a soil metagenome using Burrows Wheeler Aligner. Resulting SAM files were converted to raw reads using HTSeq, and annotated using Uniref90 or EGGNOG databases. Results: To reduce the size of the RNA-Seq counts table and increase its computational tractability, transcripts containing a minimum of 75 total counts, but no more than 3 zero counts, across the 15 samples were removed. The subsequent dataset was normalized using DESeq2, resulting in a dataset consisting of 6947 unique transcripts across the 15 samples, and 185,920,068 reads. We identified gene categories that were enriched in a sample type relative to the overall dataset using Fisher’s exact test. Conclusions: our dataset confirms that the functional module consortia generated from targeted enrichments of a starting soil inoculum had distinct functional trends by enrichment type.
Project description:Investigate long non-coding RNA (lncRNA) expression characteristics in the peripheral blood lymphocytes of Xinjiang Kazakh people with essential hypertension.
Project description:A large corpus of 112 keratin extracts from archaeological fibres collected in Bronze Age and Iron Age sites of the Keriya valley in the Taklamakan desert (Xinjiang, China) was analyzed by bottom-up proteomics for archaeological purpose.
Project description:We report raw bulk RNA sequencing data rice roots (X.kitaake) protoplasted for 2.5 hours and 3 hours to eliminate the effects of protoplasting duration on our scRNA-seq analysis, as well as rice roots grown in gel, non-compacted soil and compacted soil conditions to verify our findsing with scRNA-seq studies