Project description:Tilapia Lake Virus (TiLV) poses a significant threat to global tilapia aquaculture, causing high mortality rates and severe economic losses. Despite its impact, the molecular mechanisms of TiLV-host interactions remain poorly understood. This study investigates the proteomic and phosphoproteomic changes in two piscine cell lines, E-11 and RHTiB, following TiLV infection.
Project description:This series includes a 32-array training dataset used to evaluate E-Predict normalization and similarity metric parameters as well as 13 microarrays used as examples in (Urisman, et. al 2005). Training data set includes 15 independent HeLa RNAhybridizations (microarrays 1-15), 10 independent nasal lavage samples positive for Respiratory Syncytial virus (microarrays 16-25), and 7 independent nasal lavage samples positive for Influenza A virus (microarrays 26-32). Examples iclude a serum sample positive for Hepatitis B virus (microarray 33), a nasal lavage sample positive for both Influenza A virus and Respiratory Syncytial virus (microarray 34), and culture samples of 11 distinct Human Rhinovirus serotypes (microarrays 35-45). Keywords = virus detection, E-Predict, species identification, metagenomics
Project description:This series includes a 32-array training dataset used to evaluate E-Predict normalization and similarity metric parameters as well as 13 microarrays used as examples in (Urisman, et. al 2005). Training data set includes 15 independent HeLa RNAhybridizations (microarrays 1-15), 10 independent nasal lavage samples positive for Respiratory Syncytial virus (microarrays 16-25), and 7 independent nasal lavage samples positive for Influenza A virus (microarrays 26-32). Examples iclude a serum sample positive for Hepatitis B virus (microarray 33), a nasal lavage sample positive for both Influenza A virus and Respiratory Syncytial virus (microarray 34), and culture samples of 11 distinct Human Rhinovirus serotypes (microarrays 35-45). Keywords = virus detection, E-Predict, species identification, metagenomics Keywords: other
Project description:Oreochromis niloticus represents a critically important species in the aquaculture industry due to its economic significance. Probiotics used as feed additives are known to enhance the growth performance and health of tilapia. However, the underlying mechanisms by which these benefits are conferred remain poorly understood. Here, we demonstrate that Lactobacillus salivarius exhibits significant growth performance-enhancing effects when used as a feed additive. Utilizing multi-omics approaches, our results revealed that L. salivarius significantly modulates the composition and abundance of the intestinal microbiota. Bile acids, choline, and tryptophan were identified as pivotal factors in the microbial-mediated modulation of systemic metabolism. Additionally, we have delineated a single-cell atlas of the tilapia intestine for the first time, discovering that L. salivarius_01 increases the populations of intestinal epithelial cells, immune cells, and epithelial stem cells. A broad spectrum of developmentally relevant genes and pathways were found to be activated. This study significantly advances the application of probiotics in promoting sustainable aquaculture practices.
Project description:Streptococcus agalactiae (Lancefield’s group B Streptococcus, GBS) is a major bacterial species of genus Streptococcus and has medical and veterinary importance by affecting mainly humans (Maione et al., 2005; Johri et al., 2006), cattle (Keefe, 1997) and fish (Mian et al., 2009). The GBS is the most important pathogen for the Nile tilapia, a global commodity of the aquaculture sector, causing outbreaks of septicemia and meningoencephalitis (Hernández et al., 2009; Mian et al., 2009).
2018-11-23 | PXD009330 | Pride
Project description:Tilapia lake virus isolate BD-2017 from Bangladesh
Project description:Hepatitis Delta virus (HDV) is a satellite of Hepatitis B virus with a single stranded circular RNA genome. HDV RNA genome synthesis is carried out in infected cells by cellular RNA polymerases with the assistance of the small hepatitis delta antigen (S-HDAg). Here we show that S-HDAg binds the Bromodomain (BRD) Adjacent To Zinc Finger Domain 2B (BAZ2B) protein, a regulatory subunit of BRF (BAZ2B-Associated Remodeling Factor) ISWI chromatin remodeling complexes. ShRNAs-mediated silencing of BAZ2B or its inactivation with the BAZ2B-BRD inhibitor GSK-2801 impairs HDV replication in HDV-infected human hepatocytes. S-HDAg contains a short linear interacting motif (SLiM) KacXXR, similar to the one recognized by BAZ2B-BRD in histone H3. We found that the integrity of the S-HDAg SLiM sequence is required for S-HDAg interaction with BAZ2B-BRD and for HDV RNA replication. Our results suggest that S-HDAg uses a histone mimicry strategy to co-activate the RNA Polymerase II-dependent synthesis of HDV RNA and sustain HDV replication.