Project description:Purpose: The goal of this study was to elucidate the collateral effects associated with OXA-23 overexpression on the Acinetobacter baumannii global transcriptome. Results: Besides the 99.73-fold increase in blaOXA-23 transcript upon IPTG induction, no other transcripts showed more than a 2-fold change compared to the wildtype control. This suggests that OXA-23 over expression to levels similarly observed in multi drug resistant A. baumannii clinical isolates does not effect the transcriptome.
Project description:Carbapenem-resistant Acinetobacter baumannii (CRAb) is an urgent public health threat, according to the CDC. This pathogen has few treatment options and causes severe nosocomial infections with >50% fatality rate. Although previous studies have examined the proteome of CRAb, there have been no focused analyses of dynamic changes to β-lactamase expression that may occur due to drug exposure. Here, we present our initial proteomic study of variation in β-lactamase expression that occurs in CRAb with different β-lactam antibiotics. Briefly, drug resistance to Ab (ATCC 19606) was induced by the administration of various classes of β-lactam antibiotics, and the cell-free supernatant was isolated, concentrated, separated by SDS-PAGE, digested with trypsin, and identified by label-free LC-MS-based quantitative proteomics. Thirteen proteins were identified and evaluated using a 1789 sequence database of Ab β-lactamases from UniProt, the majority of which were Class C β-lactamases (≥80%). Importantly, different antibiotics, even those of the same class (e.g. penicillin and amoxicillin), induced non-equivalent responses comprising various isoforms of Class C and D serine-β-lactamases, resulting in unique resistomes. These results open the door to a new approach of analyzing and studying the problem of multi-drug resistance in bacteria that rely strongly on β-lactamase expression.
Project description:The nosocomial pathogen Acinetobacter baumannii is a frequent cause of hospital acquired infections worldwide, and a challenge for treatment due to its evolved resistance to antibiotics, including carbapenems. To gain insight on A. baumannii antibiotic resistance mechanisms, we analyzed the protein interaction network of a multidrug-resistant A. baumannii clinical strain Ab5075. Using in vivo chemical cross-linking and mass spectrometry, we identified 2,068 non-redundant cross-linked peptide pairs containing 245 intra- and 398 inter- molecular interactions. Outer membrane proteins OmpA and YiaD, and carbapenemase Oxa-23 are hubs of the identified interaction network. Eighteen novel interactors of Oxa-23 were identified. Interactions of Oxa-23 with outer membrane porins OmpA and CarO were verified with co-immunoprecipitation analysis. Furthermore, transposon mutagenesis of oxa-23 or interactors of Oxa-23 demonstrated changes in meropenem or imipenem sensitivity in Ab5075. These results provide the first view of a porin-localized toxin inactivation model and increase understanding of bacterial antibiotic resistance mechanisms.
Project description:Unknown are the mechanisms of tolerance and persistence associated to several compounds in A.baumannii clinical isolates. Using transcriptomical and microbiological studies, we found a link between bacterial tolerance mechanisms to clorhexidine as well as the development of persistence in presence of imipenem in an A.baumannii strain belonging to ST-2 clinical clone (carbapenem-resistant with OXA-24 ß-lactamase and AbkAB TA system by plasmid). Interestingly, in A.baumannii ATCC17978 strain (carbapenem-susceptible isolate which carries AbkAB TA system by plasmid) showed persistence in presence of imipenem.
Project description:Oral squamous cell carcinoma (OSCC) represents a major malignancy in the oral and maxillofacial region. The primary therapeutic agents, 5-fluorouracil (5FU) and oxaliplatin (OXA), often encounter the challenge of chemoresistance, leading to treatment failure. The WNT/β-catenin signaling pathway, closely tied with chemoresistance, offers a promising therapeutic avenue. This study delves into this potential connection. 5FU-resistant and OXA-resistant cell lines were established by gradually elevating the drug concentration in the culture medium. Differential gene expressions between parental and resistant cells were analyzed by RNA sequencing analysis, which was then substantiated via RT-qPCR and western blot. The influence of the WNT signaling on OSCC drug resistance was ascertained through WNT3 knockdown or overexpression. The WNT inhibitor, MSAB, was probed for its capacity to boost the efficacy of 5FU or OXA. Through transcriptome sequencing, successfully derived 5FU-resistant and OXA-resistant cell lines revealed a conspicuous activation of the WNT/β-catenin signaling pathway in the drug-resistant cells. WNT3 was identified as a pivotal factor contributing to chemoresistance in OSCC. Counteracting β-catenin notably augmented the therapeutic potency of 5FU and OXA. Our study underscored the activation of the WNT/β-catenin signaling pathway in resistant OSCC cell lines. By modulating WNT signaling activity, drug resistance in OSCC cells may be effectively circumvented.