Project description:An Infinium microarray platform (GPL28271, HorvathMammalMethylChip40) was used to generate DNA methylation data from skin samples of beluga whales, Maui's dolphin, and humpback whale. Tissue: Skin
2022-06-16 | GSE164465 | GEO
Project description:Bacterial communities in seawater in habitats of indo-Pacific humpback dolphin in Northern Beibu Gulf
| PRJNA924999 | ENA
Project description:Eukaryote community structure in the Indo-Pacific humpback dolphin (Sousa chinensis) habitats of the Beibu Gulf using 18s rRNA DNA metabarcoding
Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
| 2533916 | ecrin-mdr-crc
Project description:Phylogenomics of Indo-Pacific Porites
Project description:The Crown-of-Thorns starfish (COTS), Acanthaster planci, is a highly fecund predator of reef-building corals distributed throughout the Indo-Pacific. COTS population outbreaks cause substantial loss of coral cover, diminishing the integrity and resilience of the reef ecosystems thus increasing their susceptibility to climate change. We sequenced genomes of A. planci from the Great Barrier Reef, Australia (GBR) and Okinawa, Japan (OKI) to guide identification of species-specific peptide communication with potential applications in mitigation strategies. The genome-encoded proteins excreted and secreted into the surrounding seawater by COTS forming aggregations and by those escaping the predatory giant triton snail, Charonia tritonis, were identified LC-MS/MS.
Project description:The Pacific oyster (Crassostrea gigas) is a kind of marine bivalve of great economic and ecological importance and is among the animals possessing the highest level of genome DNA variations. Despite large efforts made for the discovery of Pacific oyster SNPs in many research groups, challenge still remains as how to utilize SNPs in a high-throughput, transferable and economical manner. In the study, we constructed an oyster 190K SNP array with Affymetrix Axiom genotyping technology. A total of 190,420 SNPs were designed on the chip, which were selected from 54 M SNPs identified by re-sequencing of more than 400 Pacific oysters. Genotyping results from 96 wild oysters indicated that 133,984 (70.4%) SNPs were polymorphic and successfully converted on the chip. Carrying 133K polymorphic SNPs, the oyster 190K SNP array is the first high density SNP chip with the largest throughput currently in mollusc and is commercially available to the worldwide research community.