Project description:The existence of ancient rocks in present mid-ocean ridges have long been observed but received less attention. Here we report the discovery of zircons with both reasonably young ages of about 5?Ma and abnormally old ages of approximate 180?Ma from two evolved gabbroic rocks that were dredged from the Southwest Indian Ridge (SWIR) in the Gallieni fracture zone. U-Pb and Lu-Hf isotope analyses of zircons were made using ion probe and conventional laser abrasion directly in petrographic thin sections. Young zircons and their host oxide gabbro have positive Hf isotope compositions (?Hf?=?+15.7-+12.4), suggesting a highly depleted mantle beneath the SWIR. The spread ?Hf values (from-2.3 to-4.5) of abnormally old zircons, together with the unradiogenic Nd-Hf isotope of the host quartz diorite, appears to suggest an ancient juvenile magmatism along the rifting margin of the southern Gondwana prior to the opening of the Indian Ocean. A convincing explanation for the origin of the unusually old zircons is yet to surface, however, an update of the theory of plate tectonics would be expected with continuing discovery of ancient rocks in the mid-oceanic ridges and abyssal ocean basins.
Project description:UNLABELLED:Sulfur is an important element in sustaining microbial communities present in hydrothermal vents. Sulfur oxidation has been extensively studied due to its importance in chemosynthetic pathways in hydrothermal fields; however, less is known about sulfate reduction. Here, the metagenomes of hydrothermal chimneys located on the ultraslow-spreading Southwest Indian Ridge (SWIR) were pyrosequenced to elucidate the associated microbial sulfur cycle. A taxonomic summary of known genes revealed a few dominant bacteria that participated in the microbial sulfur cycle, particularly sulfate-reducing Deltaproteobacteria. The metagenomes studied contained highly abundant genes related to sulfur oxidation and reduction. Several carbon metabolic pathways, in particular the Calvin-Benson-Bassham pathway and the reductive tricarboxylic acid cycles for CO2 fixation, were identified in sulfur-oxidizing autotrophic bacteria. In contrast, highly abundant genes related to the oxidation of short-chain alkanes were grouped with sulfate-reducing bacteria, suggesting an important role for short-chain alkanes in the sulfur cycle. Furthermore, sulfur-oxidizing bacteria were associated with enrichment for genes involved in the denitrification pathway, while sulfate-reducing bacteria displayed enrichment for genes responsible for hydrogen utilization. In conclusion, this study provides insights regarding major microbial metabolic activities that are driven by the sulfur cycle in low-temperature hydrothermal chimneys present on an ultraslow midocean ridge. IMPORTANCE:There have been limited studies on chimney sulfides located at ultraslow-spreading ridges. The analysis of metagenomes of hydrothermal chimneys on the ultraslow-spreading Southwest Indian Ridge suggests the presence of a microbial sulfur cycle. The sulfur cycle should be centralized within a microbial community that displays enrichment for sulfur metabolism-related genes. The present study elucidated a significant role of the microbial sulfur cycle in sustaining an entire microbial community in low-temperature hydrothermal chimneys on an ultraslow spreading midocean ridge, which has characteristics distinct from those of other types of hydrothermal fields.
Project description:Continuous tow investigations have shown that the present vent field inventory along fast to intermediate spreading ridges may be underestimated by at least 3-6 times, while the limited towed line investigations of venting sites along slow to ultra-slow spreading ridges make it impossible to determine their distribution. The Chinese Dayang cruise has conducted detailed towed line surveys of hydrothermal activity on segment 27 of the ultra-slow spreading southwest Indian ridge in 2015. The results have identified as many as 9 hydrothermal fields along 85-km-long segment, including one confirmed hydrothermal field, three inferred hydrothermal fields and five suspected fields. Hydrothermal activities are not only limited along-axis but also found approximately 10 km away from the axis. These vent fields are likely powered by a seismically identified axial magma chamber, including melt migration along normal faults to flank areas. The calculated hydrothermal activity frequency on segment 27 is approximately 3.6-8 times higher than that calculated from the Interridge database, suggesting that careful system exploration can reveal more hydrothermal activities even on ultra-slow spreading ridges effected by hotspot.
Project description:The Southwest Indian Ridge (SWIR) is one of the typical representatives of deep-sea ultraslow-spreading ridges, and has increasingly become a hot spot of studying subsurface geological activities and deep-sea mining management. However, the understanding of microbial activities is still limited on active hydrothermal vent chimneys in SWIR. In this study, samples from an active black smoker and a diffuse vent located in the Longqi hydrothermal region were collected for deep metagenomic sequencing, which yielded approximately 290 GB clean data and 295 mid-to-high-quality metagenome-assembled genomes (MAGs). Sulfur oxidation conducted by a variety of Gammaproteobacteria, Alphaproteobacteria, and Campylobacterota was presumed to be the major energy source for chemosynthesis in Longqi hydrothermal vents. Diverse iron-related microorganisms were recovered, including iron-oxidizing Zetaproteobacteria, iron-reducing Deferrisoma, and magnetotactic bacterium. Twenty-two bacterial MAGs from 12 uncultured phyla harbored iron oxidase Cyc2 homologs and enzymes for organic carbon degradation, indicated novel chemolithoheterotrophic iron-oxidizing bacteria that affected iron biogeochemistry in hydrothermal vents. Meanwhile, potential interactions between microbial communities and chimney minerals were emphasized as enriched metabolic potential of siderophore transportation, and extracellular electron transfer functioned by multi-heme proteins was discovered. Composition of chimney minerals probably affected microbial iron metabolic potential, as pyrrhotite might provide more available iron for microbial communities. Collectively, this study provides novel insights into microbial activities and potential mineral-microorganism interactions in hydrothermal vents. IMPORTANCE Microbial activities and interactions with minerals and venting fluid in active hydrothermal vents remain unclear in the ultraslow-spreading SWIR (Southwest Indian Ridge). Understanding about how minerals influence microbial metabolism is currently limited given the obstacles in cultivating microorganisms with sulfur or iron oxidoreduction functions. Here, comprehensive descriptions on microbial composition and metabolic profile on 2 hydrothermal vents in SWIR were obtained based on cultivation-free metagenome sequencing. In particular, autotrophic sulfur oxidation supported by minerals was presumed, emphasizing the role of chimney minerals in supporting chemosynthesis. Presence of novel heterotrophic iron-oxidizing bacteria was also indicated, suggesting overlooked biogeochemical pathways directed by microorganisms that connected sulfide mineral dissolution and organic carbon degradation in hydrothermal vents. Our findings offer novel insights into microbial function and biotic interactions on minerals in ultraslow-spreading ridges.
Project description:The deep-sea hydrothermal vents (DSHVs) in the Southwest Indian Ridge (SWIR) are formed by specific geological settings. However, the community structure and ecological function of the microbial inhabitants on the sulfide chimneys of active hydrothermal vents remain largely unknown. In this study, our analyses of 16S rRNA gene amplicons and 16S rRNA metagenomic reads showed the dominance of sulfur-oxidizing Ectothiorhodospiraceae, Thiomicrorhabdus, Sulfurimonas, and Sulfurovum on the wall of two active hydrothermal chimneys. Compared with the inactive hydrothermal sediments of SWIR, the active hydrothermal chimneys lacked sulfur-reducing bacteria. The metabolic potentials of the retrieved 82 metagenome-assembled genomes (MAGs) suggest that sulfur oxidation might be conducted by Thiohalomonadales (classified as Ectothiorhodospiraceae based on 16S rRNA gene amplicons), Sulfurovaceae, Hyphomicrobiaceae, Thiotrichaceae, Thiomicrospiraceae, and Rhodobacteraceae. For CO2 fixation, the Calvin-Benson-Bassham and reductive TCA pathways were employed by these bacteria. In Thiohalomonadales MAGs, we revealed putative phytochrome, carotenoid precursor, and squalene synthesis pathways, indicating a possible capacity of Thiohalomonadales in adaptation to dynamics redox conditions and the utilization of red light from the hot hydrothermal chimneys for photolithotrophic growth. This study, therefore, reveals unique microbiomes and their genomic features in the active hydrothermal chimneys of SWIR, which casts light on ecosystem establishment and development in hydrothermal fields and the deep biosphere.
Project description:Lost City (mid-Atlantic ridge) is a unique oceanic hydrothermal field where carbonate-brucite chimneys are colonized by a single phylotype of archaeal Methanosarcinales, as well as sulfur- and methane-metabolizing bacteria. So far, only one submarine analog of Lost City has been characterized, the Prony Bay hydrothermal field (New Caledonia), which nonetheless shows more microbiological similarities with ecosystems associated with continental ophiolites. This study presents the microbial ecology of the 'Lost City'-type Old City hydrothermal field, recently discovered along the southwest Indian ridge. Five carbonate-brucite chimneys were sampled and subjected to mineralogical and geochemical analyses, microimaging, as well as 16S rRNA-encoding gene and metagenomic sequencing. Dominant taxa and metabolisms vary between chimneys, in conjunction with the predicted redox state, while potential formate- and CO-metabolizing microorganisms as well as sulfur-metabolizing bacteria are always abundant. We hypothesize that the variable environmental conditions resulting from the slow and diffuse hydrothermal fluid discharge that currently characterizes Old City could lead to different microbial populations between chimneys that utilize CO and formate differently as carbon or electron sources. Old City discovery and this first description of its microbial ecology opens up attractive perspectives for understanding environmental factors shaping communities and metabolisms in oceanic serpentinite-hosted ecosystems.
Project description:Southwest Indian Ridge (SWIR) is a typical oceanic ultraslow spreading ridge with intensive hydrothermal activities. The microbial communities in hydrothermal fields including primary producers to support the entire ecosystem by utilizing geochemical energy generated from rock-seawater interactions. Here we have examined the microbial community structures on four hydrothermal vents from SWIR, representing distinct characteristics in terms of temperature, pH and metal compositions, by using Illumina sequencing of the 16S small subunit ribosomal RNA (rRNA) genes, to correlate bacterial and archaeal populations with the nature of the vents influenced by ultraslow spreading features. Epsilon-, Gamma-, Alpha-, and Deltaproteobacteria and members of the phylum Bacteroidetes and Planctomycetes, as well as Thaumarchaeota, Woesearchaeota, and Euryarchaeota were dominant in all the samples. Both bacterial and archaeal community structures showed distinguished patterns compared to those in the fast-spreading East Pacific Ridge or the slow-spreading Mid-Atlantic Ridge as previously reported. Furthermore, within SWIR, the microbial communities are highly correlated with the local temperatures. For example, the sulfur-oxidizing bacteria were dominant within bacteria from low-temperature vents, but were not represented as the dominating group recovered from high temperature (over 300°C) venting chimneys in SWIR. Meanwhile, Thaumarchaeota, the ammonium oxidizing archaea, only showed high relative abundance of amplicons in the vents with high-temperature in SWIR. These findings provide insights on the microbial community in ultraslow spreading hydrothermal fields, and therefore assist us in the understanding of geochemical cycling therein.
Project description:A new species of pycnogonid collected by the Chinese research vessel R/V Dayangyihao during cruises to the Southwest Indian Ridge in 2008 and 2009 is recorded. The new species, Austrodecus bamberi, is placed into the tristanense-section by the characters of 4-articled ovigers and present auxiliary claws and is distinguished from other species in this section by the number and length of tubercles on the first coxae.
Project description:Dorvilleids were collected from hydrothermal vents on the Southwest Indian Ridge by manned submersible Jiaolong. These represent a new species of Ophryotrocha that is here described as Ophryotrocha jiaolongisp. n. This is the first dorvilleid described from vents on the Southwest Indian Ridge. It most closely resembles another vent species, Ophryotrocha akessoni Blake, 1985 from the Galapagos Rift, but can be distinguished by its antennae, palps, jaw structure. The new species has particularly distinctive mandibles, which allow it to be easily identified.