Project description:The availability of viral entry factors is a prerequisite for the cross-species transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Large-scale single-cell screening on animal cells is a powerful tool to reveal the expression patterns of viral entry genes for different hosts. But such exploration for SARS-CoV-2 remained limited. Here, we presented the broadest pan-species single-nucleus RNA sequencing study to date, covering 11 representative species in pets (cat, dog, hamster, lizard), livestock (goat, rabbit), poultry (duck, pigeon) and wildlife (pangolin, tiger, deer), from which we investigated the co-expression of ACE2 and TMPRSS2. Notably, the proportion of SARS-CoV-2 putative target cells in cat was found considerably higher than that of other species investigated in this study, highlighting the necessity to carefully evaluate the role of cats during SARS-CoV-2 circulation. Furthermore, cross-species analysis of comparative lung cell atlas in mammals, reptiles and birds revealed core developmental programs, critical connectomes and conserved regulatory circuits among evolutionarily distant species. Additionally, we developed a user-friendly and freely accessible online platform named PANDORA for researchers to fully exploit the pan-species single cell atlas. Overall, our work provides a compendium of gene expression profiles for non-model animals, which could be employed to identify potential SARS-CoV-2 target cells and narrow down putative zoonotic reservoirs. Alternatively, our resources could also be utilized to illuminate the cellular and molecular mechanisms underlying animal tissue evolution.
Project description:Because of severe abiotic limitations, Antarctic soils represent simplified ecosystems, where microorganisms are the principle drivers of nutrient cycling. This relative simplicity makes these ecosystems particularly vulnerable to perturbations, like global warming, and the Antarctic Peninsula is among the most rapidly warming regions on the planet. However, the consequences of the ongoing warming of Antarctica on microorganisms and the processes they mediate are unknown. Here, using 16S rRNA gene pyrosequencing and qPCR, we report a number of highly consistent changes in microbial community structure and abundance across very disparate sub-Antarctic and Antarctic environments following three years of experimental field warming (+ 0.5-2°C). Specifically, we found significant increases in the abundance of fungi and bacteria and in the Alphaproteobacteria-to-Acidobacteria ratio. These alterations were linked to a significant increase in soil respiration. Furthermore, the shifts toward generalist or opportunistic bacterial communities following warming weakened the linkage between bacterial diversity and functional diversity. Warming also increased the abundance of some organisms related to the N-cycle, detected as an increase in the relative abundance of nitrogenase genes via GeoChip microarray analyses. Our results demonstrate that soil microorganisms across a range of sub-Antarctic and Antarctic environments can respond consistently and rapidly to increasing temperatures, thereby potentially disrupting soil functioning.
Project description:Using RNAseq of small RNA libraries isolated from the gill tissue of the Antarctic fish Trematomus bernacchii we have characterized the termal sensitivity of miRNA homologues in these highly stenothermic fish.
Project description:Lysine methylation is part of the posttranscriptional histone code employed to recruit modification specific readers to chromatin. Unbiased, quantitative mass spectrometry approaches combined with peptide pull-downs have been used to study histone methylation-dependent binders in mammalian cells. Here, we extend the study to birds by investigating the interaction partners for H3K4me3, H3K9me3, H3K27me3 and H3K36me3 in chicken (gallus gallus) and zebra finch (taeniopygia guttata) using label free quantitative proteomics. In general, we find very strong overlap in interaction partners for the trimethyl marks in birds compared to mammals, underscoring the known conserved function of these modifications. In agreement with their epigenetic role, we find binding of PHF2 and members of the TFIID, SAGA, SET1 and NURF complex to the activation mark H3K4me3. Our data furthermore supports the existence of a LID complex in vertebrates recruited to the H3K4me3. The repressive marks are bound by the HP1 proteins and the EED subunit of the PRC2 complex as well as by WIZ. Like the screens in mammals, we found ZNF462, ZNF828 and POGZ enriched at H3K9me3. However, we noted some unexpected differences. First, we did not observe the enrichment of CDYL and CDYL2 at the repressive marks. Second N-PAC (also known as GLYR1), an H3K36me3 interactor in mammals, is not binding to this modification in our screen. This suggests that despite strong conservation of the histone tail sequence, species-specific differences in epigenetic readers may have evolved.