Project description:Gene expression studies were performed to identify pathways possibly dysregulated by mutant in the gene GM-NM-1(olf). These experiments employed RNA derived from lymphoblastoid cell lines established for 4 affected carriers and 4 non-carriers. In comparison to endogenous control and other dystonia-associated genes, GNAL was expressed at relatively low levels in lymphoblastoid cell lines. Comparison of whole blood expression profiles of mutation carrying dystonia patients with normal controls
Project description:Spinal interneurons are critical modulators of locomotor circuit function. In the dorsal spinal cord, a set of interneurons called GABApre presynaptically inhibits proprioceptive sensory afferent terminals, thus negatively regulating sensory-motor signaling. While deficits in presynaptic inhibition have been inferred in human locomotor diseases, including dystonia, it remains unknown whether GABApre circuit components are altered in these conditions. In this study, we use developmental timing to show that GABApre neurons are a late Ptf1a-expressing subclass and localize to the intermediate spinal cord. Using a microarray screen to identify genes expressed in this intermediate population, we find the kelch-like family member Klhl14, implicated in dystonia through its direct binding with torsion-dystonia related protein Tor1a. Furthermore, in Tor1a mutant mice in which Klhl14 and Tor1a binding is disrupted (Dyt1ΔE), GABApre-sensory afferent synapse formation is impaired. Our findings suggest a potential contribution of GABApre neurons to the deficits in presynaptic inhibition observed in dystonia.
Project description:DYT1 dystonia is an autosomal-dominantly inherited movement disorder, which is usually caused by a GAG deletion in the TOR1A gene. Due to the reduced penetrance of ~30-40%, the determination of the mutation in a subject is of limited use with regard to actual manifestation of symptoms. In the present study, we used Affymetrix oligonucleotide microarrays to analyze global gene expression in blood samples of 15 manifesting and 15 non-manifesting mutation carriers in order to identify a susceptibility profile beyond the GAG deletion which is associated with the manifestation of symptoms in DYT1 dystonia.We identified a genetic signature which distinguished between asymptomatic mutation carriers and symptomatic DYT1 patients with 86.7% sensitivity and 100% specificity. This genetic signature could correctly predict the disease state in an independent test set with a sensitivity of 87.5% and a specificity of 85.7%.Conclusively, this genetic signature might provide a possibility to distinguish DYT1 patients from asymptomatic mutation carriers. Comparison of whole blood expression profiles of patients with DYT1 dystonia with non manifesting mutation carriers and non mutation carriers
Project description:Dystonia is characterized by involuntary muscle contractions. Its many forms are genetically, phenotypically and etiologically diverse and it is unknown whether their pathogenesis converges on shared pathways. Mutations in THAP1, a zinc-finger transcription factor, cause DYT6, but its neuronal targets and functions are unknown. We used RNA-Seq to assay the in vivo effect of a heterozygote Thap1C54Y or Exon2 allele on the gene transcription signatures in neonatal mouse striatum and cerebellum. Enriched pathways and gene ontology terms include eIF2α Signaling, Mitochondrial Dysfunction, Neuron Projection Development, Axonal Guidance Signaling, and Synaptic Long Term Depression pathways, which are dysregulated in a genotype and tissue-dependent manner. Electrophysiological and neurite outgrowth assays confirmed the functional significance of those findings. Notably, several of these pathways were recently implicated in other forms of inherited dystonia, including DYT1. We conclude that dysfunction of these pathways may represent a point of convergence on the pathogenesis of unrelated forms of inherited dystonia.
Project description:To elicit a dystonia-like phenotype in a genetically predisposed DYT-TOR1A mouse model (DYT1KI) by performing a right sciatic nerve crush injury. To identify novel pathophysiological pathways and possible biomarker, we performed a multi-omic analysis of three dystonia-relevant brain regions
Project description:To elicit a dystonia-like phenotype in a genetically predisposed DYT-TOR1A mouse model (DYT1KI) by performing a right sciatic nerve crush injury. To identify novel pathophysiological pathways and possible biomarker, we performed a multi-omic analysis of three dystonia-relevant brain regions