Project description:Anaerobic digestion is a popular and effective microbial process for waste treatment. The performance of anaerobic digestion processes is contingent on the balance of the microbial food web in utilizing various substrates. Recently, co-digestion, i.e., supplementing the primary substrate with an organic-rich co-substrate has been exploited to improve waste treatment efficiency. Yet the potential effects of elevated organic loading on microbial functional gene community remains elusive. In this study, functional gene array (GeoChip 5.0) was used to assess the response of microbial community to the addition of poultry waste in anaerobic digesters treating dairy manure. Consistent with 16S rRNA gene sequences data, GeoChip data showed that microbial community compositions were significantly shifted in favor of copiotrophic populations by co-digestion, as taxa with higher rRNA gene copy number such as Bacilli were enriched. The acetoclastic methanogen Methanosarcina was also enriched, while Methanosaeta was unaltered but more abundant than Methanosarcina throughout the study period. The microbial functional diversity involved in anaerobic digestion were also increased under co-digestion.
2017-01-12 | GSE93419 | GEO
Project description:Microbial community dynamics of bloom
| PRJNA595399 | ENA
Project description:Microbial community dynamics of bloom
Project description:Dinoflagellate blooms are natural phenomena that have drawn global attention due to their huge negative impacts on marine ecosystems, mariculture and human health. Although the understanding of dinoflagellate blooms has been significantly improved over the past half century, little is known about the underlying mechanisms sustaining the high biomass growth rate during the bloom period which is paradoxically characterized by low dissolved CO2 and inorganic nutrients. Here, we compared the metaproteomes of non-bloom, mid-bloom and late-bloom cells of a marine dinoflagellate Prorocentrum donghaiense in the coastal East China Sea, to understand the underlying mechanisms sustaining high biomass growth rate under the typically low CO2 and inorganic nutrient conditions.