Project description:Compare luteal and follicular phases of fimbria and ampulla tissue Fallopian tube epithelial cells for gene expression analysis of fimbria and ampulla specimens were obtained using LCM
Project description:We analysed the extracellular matrix (ECM) landscape of fresh, healthy tissues from human fallopian tube (FT), fimbria (FB, the tissue of origin of serous tubal intraepithelial lesions) and ovarian tissue (OV). The aim was to identify differentially expressed matrix proteins between FB and FT or OV which may promote the neoplastic transformation of serous tubal intraepithelial lesions (STICs) into high-grade serous ovarian cancer, HGSOC, and metastasis from the FB to the OV.
Project description:The cell of origin of serious ovarian cancer is unknown. To create a mouse model for this lethal cancer and identify early cancer biomarkers, we conditionally deleted both Dicer (essential for microRNA biosynthesis) and Pten (a negative regulator of the PI3K pathway) in the female reproductive tract. Beginning at ~3-5 months, these Dicer/Pten mutant mice develop high-grade serious carcinomas that initiate in the stroma of the fallopian tube through a mesenchymal-to-epithelial transition (MET), subsequently envelop the ovary, and then metastasize throughout the peritoneum, resulting in ascites and 100% lethality by 13 months. The fallopian tube cancers demonstrate upregulation of genes encoding known and novel secreted proteins that are potential biomarkers. This study uncovers a new paradigm for the initiation of high-grade serous ovarian cancer. We generated gene expression profiles of 8 human primary serious tumors, and 2 independent samples of human normal fimbria. We defined genes that were high or low in tumors relative to fimbria, and compared these results with those of the correponding mouse model.
Project description:ATAC-seq on human fallopian tube For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODE_Data_Use_Policy_for_External_Users_03-07-14.pdf
Project description:ATAC-seq on human fallopian tube For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODE_Data_Use_Policy_for_External_Users_03-07-14.pdf
Project description:ATAC-seq on human fallopian tube For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODE_Data_Use_Policy_for_External_Users_03-07-14.pdf
Project description:Microarrays were used to examine gene expression changes that may be present in the fallopian tube epithelium of morphologically normal BRCA1 mutation positive and negative subjects. Fallopian tube epithelia has been implicated as an early point of origin for serous carcninoma. By examining the early events present in the microenvironment of this tissue between BRCA1 mutation carriers and non-carriers, we hoped to elucidate mechanisms that may lead to the development of epithelial ovarian cancer. Laser microcapture of samples from 12 BRCA1 mutation carriers and 12 non-mutation subjects was performed. Samples were further grouped according to menstrual cycle.