Project description:This study characterized variations in the methylation profile of mitochondrial DNA (mtDNA) during initial bovine embryo development and correlated the presence of methylation with mtDNA transcription. Bovine oocytes were obtained from abattoir ovaries and submitted to in vitro culture procedures. Oocytes and embryos were collected at various stages (immature oocyte, IM; mature oocyte, MII; zygote, ZY; 4-cells, 4C; 16-cells, 16C and blastocysts, BL). Total DNA (including mtDNA) was used for Whole Genome Enzymatic Methyl Sequencing and for quantification of mtDNA copy number. Extracted RNA was used for quantification of mitochondrial transcripts (ND6, CYTB, tRNA-Phe and tRNA-Gln) using Droplet Digital PCR. The number of mtDNA copies per oocyte/embryo was found to be similar, while methylation levels in mtDNA varied among stages. Higher total methylation levels were found mainly at 4C and 16C. In specific gene regions, higher methylation levels were also observed at 4C and 16C (ND6, CYTB and tRNA-Phe), as well as an inverse correlation with the quantity of transcripts for these regions. This is a first description of epigenetic changes occurring in mtDNA during early embryonic development. Our results indicate that methylation might regulate the mtDNA transcription at a local level, particularly around the time of embryonic genome activation.
2024-04-24 | GSE230476 | GEO
Project description:RNA-seq of Pseudoregma bambucicola across different morphs and developmental stages
| PRJNA901050 | ENA
Project description:Microbial communities of different morphs and developmental stages of Pseudoregma bambucicola (Hemiptera: Aphididae)
Project description:Mitochondrial DNA (mtDNA) damage is considered as a possible primary cause of Parkinson’s disease (PD). To explore the issue, mtDNA sequences from whole blood were analyzed in PD patients and controls using a resequencing chip and allelic substitutions were estimated for each nucleotide position (np) along the entire mtDNA sequence. Overall, 58 np showed a different allelic distribution in the two groups; of these, 81% showed an increase of non-reference alleles in PD patients, similar to findings reported in patients with Alzheimer’s disease, albeit in reduced proportion. These results suggest that age-related neurodegenerative diseases could share a mechanism involving mtDNA.
Project description:We report mitochondrial genome (mtDNA) sequences in purified mouse muscle stem cells at different ages. This study identifies changes in the mitochondrial genome of muscle stem cells during aging.