Project description:Glioblastoma (GBM) is one of the most aggressive cancers, with median survival of less than 2 years. Despite of considerable advance in molecular classification of GBMs, no improvements in therapy have been described. The scenario is further complicated by tumor heterogeneity and the relationship among genetic, transcriptional and functional findings. Classically, gene expression has been evaluated by steady-state mRNA, however, this does not take translational control into consideration, which contributes considerably to the composition of the proteome. In this study, we evaluated the transcriptomic and translatomic signature of a GBM obtained from a single patient focusing in tumor heterogeneity. In a sampling of eight fragments, we investigated the translation rates, mTORC1 and ERK1/2 pathways and identified both total and polysome associated mRNAs. An increased translation rate was observed in fragments with high-grade histological features. High-grade histology was also associated with the expression of genes related to extracellular matrix (ECM) and angiogenesis, in both transcriptomes and translatomes. However, genes associated with epithelial to mesenchymal transition and stress response, were observed only in translatomes from high-grade fragments. Overall, our results demonstrate that isolation of translated mRNA can be used to identify biomarkers and reveal previously unrecognized determinants of heterogeneity in GBMs.
Project description:Glioblastoma (GBM) is one of the most aggressive cancers, with median survival of less than 2 years. Despite of considerable advance in molecular classification of GBMs, no improvements in therapy have been described. The scenario is further complicated by tumor heterogeneity and the relationship among genetic, transcriptional and functional findings. Classically, gene expression has been evaluated by steady-state mRNA, however, this does not take translational control into consideration, which contributes considerably to the composition of the proteome. In this study, we evaluated the transcriptomic and translatomic signature of a GBM obtained from a single patient focusing in tumor heterogeneity. In a sampling of eight fragments, we investigated the translation rates, mTORC1 and ERK1/2 pathways and identified both total and polysome associated mRNAs. An increased translation rate was observed in fragments with high-grade histological features. High-grade histology was also associated with the expression of genes related to extracellular matrix (ECM) and angiogenesis, in both transcriptomes and translatomes. However, genes associated with epithelial to mesenchymal transition and stress response, were observed only in translatomes from high-grade fragments. Overall, our results demonstrate that isolation of translated mRNA can be used to identify biomarkers and reveal previously unrecognized determinants of heterogeneity in GBMs.
Project description:Copy number analyses of regionally separated intratumoral biopsies of prostate cancers. Intratumoral heterogeneity (ITH) leads to regional biases of the mutational landscape in a single tumor and may influence the single biopsy-based clinical diagnosis and treatment decision. To evaluate the extent of ITH in unifocal prostate cancers (PCAs) that had not been sought, we analyzed multiple regional biopsies from three PCAs using DNA copy number analyses. DNA copy number showed ITH including regional biases in the presentation of a well-known driver of TMPRSS2-ERG fusion. Our analyses identified a substantial level of genetic ITH in unifocal PCAs at the genomic levels, which should be taken into account for the curation of biomarkers in the clinical setting. Four intratumoral biopsies were obtained per tumor for three prostate cancers. Radical prostatectomy tissue from three patients with prostate cancers were obtained. Board-certified pathologists reviewed the hematoxylin&eosin stained sections and identified tumor-rich regions (> 80% purity). We selected four different areas for biopsy that were at least 5mm apart and were comprised of the most common Gleason pattern (the most common histologic patterns with minimal histologic differences). Copy number profiling was performed using Agilent 180K platform according to the manufacturer's protocol.
Project description:The aim of this study was to investigate the effect of VEGF targeted therapy (sunitinib) on intratumoral heterogeneity (ITH) in metastatic clear cell renal cancer (mRCC). 138 samples from patients with clear cell renal cell carcinoma, including biological replicates of nephrectomy samples. RNA extracted fresh frozen tissue samples.
Project description:Ductal carcinoma in situ (DCIS) is a nonobligate precursor of invasive breast cancer. Its biological features, particularly its intratumoral heterogeneity, remain obscure. Moreover, mechanism of lymph node metastasis is unclear. To address this deficiency, we performed single-cell transcriptome profiling of DCIS, invasive ductal carcinoma (IDC) and lymph node metastasis. Single-cell transcriptome analysis revealed that breast cancer exhibits intratumoral heterogeneity at the transcriptional level, defining specific functions, and that DCIS has similar heterogeneity to IDC.
Project description:Copy number analyses of regionally separated intratumoral biopsies of prostate cancers. Intratumoral heterogeneity (ITH) leads to regional biases of the mutational landscape in a single tumor and may influence the single biopsy-based clinical diagnosis and treatment decision. To evaluate the extent of ITH in unifocal prostate cancers (PCAs) that had not been sought, we analyzed multiple regional biopsies from three PCAs using DNA copy number analyses. DNA copy number showed ITH including regional biases in the presentation of a well-known driver of TMPRSS2-ERG fusion. Our analyses identified a substantial level of genetic ITH in unifocal PCAs at the genomic levels, which should be taken into account for the curation of biomarkers in the clinical setting.
Project description:The aim of this study was to investigate the effect of VEGF targeted therapy (sunitinib) on intratumoral heterogeneity (ITH) in metastatic clear cell renal cancer (mRCC).