Project description:The aim of this study is to identify alterations induced in gastric mucosa of mice exposed to Pteridium aquilinum and/or infected with Helicobacter pylori, in order to identify genes that are induced by bracken fern exerts exacerbating effects on gastric lesions associated to the infection. Six groups of C57Bl/6 mice were be used: 1) control, 2) infected Helicobacter pylori, 3) treated with Bracken fern extract orogastrically, 4) treated with Bracken fern extract in drinking water, 5) infected Helicobacter pylori + treated with Bracken fern extract orogastrically, 6) infected Helicobacter pylori + treated with Bracken fern extract in drinking water. The infection procedure was performed using an orogastric inoculation of H.pylori (strain SS1) twice in the first week. The RNA isolation was done in triplicate (3 mice per each condition). Further evaluation of morphological alterations on gastric mucosa, proliferative index and induction of DNA strand breaks will be performed in the mice stomach exposed to Pteridium aquilinum infected or not with Helicobacter pylori. Alterations of glycosylation in gastric tissues will also evaluated.
Project description:The aim of this study is to identify alterations induced in gastric mucosa of mice exposed to Pteridium aquilinum and/or infected with Helicobacter pylori, in order to identify genes that are induced by bracken fern exerts exacerbating effects on gastric lesions associated to the infection.
Project description:Pteris cretica L var. nervosa is one of the dominent fern species at antimony mining area where arbuscular mycorrhizal fungi can be found as a symbiosis. The effect of AMF on fern exposed to long-term excessive Sb was pooly understood. The project applied this fern co-cultivting with or withour AMF under different concentration of Sb in soil for charicterising Sb phytomediation ability of it along with the effect by AMF symbiosis.
Project description:The blood-brain barrier (BBB) is an evolutionary conserved tissue interface that possesses potent chemical protection properties functioning to strictly modulate the central nervous system (CNS) microenvironment. These same properties, including tight cellular junctions and efflux transporters, also limit access of CNS-active pharmaceuticals. For this reason, understanding the molecular mechanisms that regulate BBB chemical protection is of great biomedical interest. The BBB of Drosophila consists of two surface glia layers that completely surround the brain. This tissue interface contains both “tight” cellular junctions (termed septate junctions) and drug efflux transporters; thus, the Drosophila BBB can potentially serve as a model for understanding complex regulation of BBB physiology. In this study, we show reciprocal compensatory responses following disruption of critical BBB genes: deletion of the septate junction regulator Moody causes increased drug efflux and up-regulation of the P-glycoprotein ortholog Mdr65; conversely, disruption of Mdr65 expression causes increased septate junction tightness and up-regulation of Moody. We reveal these homeostatic interactions with physiologic observations, gene expression data, and anatomical images of the BBB surface. Whole brain microarray data point to responses that are consistent with our physiologic observations and these responses are likely localized to the BBB. To our knowledge, this is the first observation of a reciprocal compensatory interaction at a tissue barrier. Furthermore, this study paves the way for future studies elucidating the direct pathways that link GPCR signaling and drug transporter regulation at the BBB.
Project description:The blood-brain barrier (BBB) is an evolutionary conserved tissue interface that possesses potent chemical protection properties functioning to strictly modulate the central nervous system (CNS) microenvironment. These same properties, including tight cellular junctions and efflux transporters, also limit access of CNS-active pharmaceuticals. For this reason, understanding the molecular mechanisms that regulate BBB chemical protection is of great biomedical interest. The BBB of Drosophila consists of two surface glia layers that completely surround the brain. This tissue interface contains both “tight” cellular junctions (termed septate junctions) and drug efflux transporters; thus, the Drosophila BBB can potentially serve as a model for understanding complex regulation of BBB physiology. In this study, we show reciprocal compensatory responses following disruption of critical BBB genes: deletion of the septate junction regulator Moody causes increased drug efflux and up-regulation of the P-glycoprotein ortholog Mdr65; conversely, disruption of Mdr65 expression causes increased septate junction tightness and up-regulation of Moody. We reveal these homeostatic interactions with physiologic observations, gene expression data, and anatomical images of the BBB surface. Whole brain microarray data point to responses that are consistent with our physiologic observations and these responses are likely localized to the BBB. To our knowledge, this is the first observation of a reciprocal compensatory interaction at a tissue barrier. Furthermore, this study paves the way for future studies elucidating the direct pathways that link GPCR signaling and drug transporter regulation at the BBB. The main comparisons are between WT_new, C17 (Moody null), and PMdr65 (Mdr65 null). Since WT_new were processed on a different day than C17 and PMdr65, we also included another WT sample (WT_old) to control for genes that change depending on batch effects. Since the mutants are also in a different genetic background than WT, we also included a control that is in a similar background (UAS_control).