Project description:To elucidate the epigenetic regulation of salt-responsive genes helps to understand the underlying mechanisms that confer salt tolerance in rice. However, it is still largely unknown how epigenetic mechanisms function in regulating the salt-responsive genes in rice and other crops at a global level. In this study, we mainly focused on dynamic changes in transcriptome and histone marks between rice leaf and root tissues during salt treatment by using RNA-seq and ChIP-seq approaches. We demonstrated that the majority of salt-related differentially expressed genes (DEGs) display tissue-dependent changes. Similarly, tissue-dependent chromatin changes have been detected between leaf and root tissues during salt treatment. Most importantly, our study indicates that chromatin states with a combination of marks, rather than an individual mark, most likely play crucial roles in regulating differential expression of salt-responsive genes between leaf and root tissues. Especially, a special CS containing bivalent marks, H3K4me3 and H3K27me3 with a functional exclusion with each other, displays distinct functions in regulating expression of DEGs between leaf and root tissues, H3K27me3-related repressive mark mainly regulates expression of DEGs in root, but H3K4me3-releated active mark dominantly functions in regulation of down-regulated genes and possibly antagonize the repressive role of H3K27me3 in up-regulated genes in leaf. Thus, our findings indicate salt-responsive genes are differentially regulated at the chromatin level between the leaf and root tissues in rice, which provides new insights in the understanding of chromatin-based epigenetic mechanisms that confer salt tolerance in plants.
Project description:In order to analyze the transcriptome of ginseng root during leaf-expansion period and discover the genes during development, a cDNA sample was prepared from the leaf-expansion period of ginseng root and sequenced using the Illumina sequencing platform.The transcriptomic sequencing technology was set up the first time for five years the transcription of the ginseng root in the leaf-expansion period.