Project description:Evidence shows that bacteria contribute actively to the decomposition of cellulose and hemicellulose in forest soil; however, their role in this process is still unclear. Here we performed the screening and identification of bacteria showing potential cellulolytic activity from litter and organic soil of a temperate oak forest. The genomes of three cellulolytic isolates previously described as abundant in this ecosystem were sequenced and their proteomes were characterized during the growth on plant biomass and on microcrystalline cellulose. Pedobacter and Mucilaginibacter showed complex enzymatic systems containing highly diverse carbohydrate-active enzymes for the degradation of cellulose and hemicellulose, which were functionally redundant for endoglucanases, -glucosidases, endoxylanases, -xylosidases, mannosidases and carbohydrate-binding modules. Luteibacter did not express any glycosyl hydrolases traditionally recognized as cellulases. Instead, cellulose decomposition was likely performed by an expressed GH23 family protein containing a cellulose-binding domain. Interestingly, the presence of plant lignocellulose as well as crystalline cellulose both trigger the production of a wide set of hydrolytic proteins including cellulases, hemicellulases and other glycosyl hydrolases. Our findings highlight the extensive and unexplored structural diversity of enzymatic systems in cellulolytic soil bacteria and indicate the roles of multiple abundant bacterial taxa in the decomposition of cellulose and other plant polysaccharides.
Project description:Cellulose is the most abundant component of plant litter, which is critical for terrestrial carbon cycling. Nonetheless, it remains unknown how climate changes affect cellulose-decomposing microorganisms. Here, we carried out a multi-year litterbag experiment to examine cellulose decomposition undergoing +3°C warming in an Oklahoma tallgrass prairie, USA. GeoChip 5.0M was employed to detect microbial functional genes.
Project description:Both C. hutchinsonii and S. myxococcoides were grown on filter paper. Time points were taken in both early and late stages of growth to assess the cellulolytic proteins utilized during growth. As a non-cellulose control, the organisms were grown on pectin as sole carbon source. Further, the cells were also fractionated to seperate the cellular fractions in order to assess the localization of the proteins within the growing cells.
Project description:Background: The ability of Clostridium thermocellum ATCC 27405 wild-type strain to hydrolyze cellulose and ferment the degradation products directly to ethanol and other metabolic byproducts makes it an attractive candidate for consolidated bioprocessing of cellulosic biomass to biofuels. In this study, whole-genome microarrays were used to investigate the expression of C. thermocellum mRNA during growth on crystalline cellulose in controlled replicate batch fermentations. Results: A time-series analysis of gene expression revealed changes in transcript levels of ~40% of genes (~1300 out of 3198 ORFs encoded in the genome) during transition from early-exponential to late-stationary phase. K-means clustering of genes with statistically significant changes in transcript levels identified six distinct clusters of temporal expression. Broadly, genes involved in energy production, translation, glycolysis and amino acid, nucleotide and coenzyme metabolism displayed a decreasing trend in gene expression as cells entered stationary phase. In comparison, genes involved in cell structure and motility, chemotaxis, signal transduction and transcription showed an increasing trend in gene expression. Hierarchical clustering of cellulosome-related genes highlighted temporal changes in composition of this multi-enzyme complex during batch growth on crystalline cellulose, with increased expression of several genes encoding hydrolytic enzymes involved in degradation of non-cellulosic substrates in stationary phase. Conclusions: Overall, the results suggest that under low substrate availability, growth slows due to decreased metabolic potential and C. thermocellum alters its gene expression to (i) modulate the composition of cellulosomes that are released into the environment with an increased proportion of enzymes than can efficiently degrade plant polysaccharides other than cellulose, (ii) enhance signal transduction and chemotaxis mechanisms perhaps to sense the oligo-saccharide hydrolysis products, and nutrient gradients generated through the action of cell-free cellulosomes and, (iii) increase cellular motility for potentially orienting the cells’ movement towards positive environmental signals leading to nutrient sources. Such a coordinated cellular strategy would increase its chances of survival in natural ecosystems where feast and famine conditions are frequently encountered.
Project description:The thermophilic anaerobe Clostridium thermocellum is a candidate consolidated bioprocessing biocatalyst for the conversion of lignocellulosic biomass into ethanol. The microorganism expresses enzymes for both cellulose solubilization and fermentation to produce lignocellulosic ethanol making it a good candidate for industrial biofuel production. Intolerance to stresses routinely encountered during industrial fermentations may hinder the commercial development of this organism. A recently published study by Yang et al., (2012) characterized the physiological and regulatory response of C. thermocellum to ethanol supplementation. Significant changes in nitrogen metabolism and an accumulation of carbon sources were identified, revealing potential targets for metabolic engineering. In the current study, the response of C. thermocellum to heat and furfural shock were compared with the known effects of ethanol shock. Improved tolerance to these stresses are desirable traits for C. thermocellum and further understanding of the effects that these particular stresses have on the organism are the focus of this work. A forty one array study using total RNA recovered from wild-type cultures of Clostridium thermocellum at different time points of 10, 30, 60, and 120 min post-treatment with 3.95 g.L-1 ethanol, 4 g.L-1 furfural or 68°C treatment compred to that of control without treatment. At least two biological replicates were performed for each treatment and control condition.
Project description:Background: The ability of Clostridium thermocellum ATCC 27405 wild-type strain to hydrolyze cellulose and ferment the degradation products directly to ethanol and other metabolic byproducts makes it an attractive candidate for consolidated bioprocessing of cellulosic biomass to biofuels. In this study, whole-genome microarrays were used to investigate the expression of C. thermocellum mRNA during growth on crystalline cellulose in controlled replicate batch fermentations. Results: A time-series analysis of gene expression revealed changes in transcript levels of ~40% of genes (~1300 out of 3198 ORFs encoded in the genome) during transition from early-exponential to late-stationary phase. K-means clustering of genes with statistically significant changes in transcript levels identified six distinct clusters of temporal expression. Broadly, genes involved in energy production, translation, glycolysis and amino acid, nucleotide and coenzyme metabolism displayed a decreasing trend in gene expression as cells entered stationary phase. In comparison, genes involved in cell structure and motility, chemotaxis, signal transduction and transcription showed an increasing trend in gene expression. Hierarchical clustering of cellulosome-related genes highlighted temporal changes in composition of this multi-enzyme complex during batch growth on crystalline cellulose, with increased expression of several genes encoding hydrolytic enzymes involved in degradation of non-cellulosic substrates in stationary phase. Conclusions: Overall, the results suggest that under low substrate availability, growth slows due to decreased metabolic potential and C. thermocellum alters its gene expression to (i) modulate the composition of cellulosomes that are released into the environment with an increased proportion of enzymes than can efficiently degrade plant polysaccharides other than cellulose, (ii) enhance signal transduction and chemotaxis mechanisms perhaps to sense the oligo-saccharide hydrolysis products, and nutrient gradients generated through the action of cell-free cellulosomes and, (iii) increase cellular motility for potentially orienting the cellsM-bM-^@M-^Y movement towards positive environmental signals leading to nutrient sources. Such a coordinated cellular strategy would increase its chances of survival in natural ecosystems where feast and famine conditions are frequently encountered. Total RNA was extracted from the cell pellets and the reverse transcribed cDNA was hybridized to oligo-arrays containing duplicated probes representing ~90% of the annotated ORFs in C. thermocellum ATCC27405 genome.Dual-channel dye swap experimental design was used to analyze the time-course of gene expression during cellulose fermentation using two biological replicate fermentation. The 6hr sample as the reference, to which all other time-point samples (8, 10, 12, 14, 16hr) were compared.