Project description:Microarray comparative genome hybridization (mCGH) data was collected from one Neisseria cinerea, two Neisseria lactamica, two Neisseria gonorrhoeae, and 48 Neisseria meningitidis isolates. For N. meningitidis, these isolates are from diverse clonal complexes, invasive and carriage strains, and all major serogroups. The microarray platform represented N. meningitidis strains MC58, Z2491, and FAM18 and N. gonorrhoeae FA1090.
Project description:The sexually transmitted pathogen Neisseria gonorrhoeae releases outer membrane vesicles (OMVs) during infections. OMVs traffic the major porin PorB, other membrane proteins and lipo-oligosaccharide (LOS) into host innate immune cells and activate programmed cell death pathways and inflammation. Little is known, however, about the proteome and LOS content of OMVs released by clinical strains isolated from different infection sites, and whether this affects immune responses. Here, we characterized OMVs from four N. gonorrhoeae isolates and determined their size, abundance, proteome and activation of inflammatory responses in macrophages. The overall proteome of the OMVs was conserved between the four different isolates, included major outer membrane, periplasm, cytoplasmic membrane proteins. Despite this, we observed differences in the rate of OMV biogenesis and the relative abundance of major outer membrane proteins and LOS. Consequently, OMVs from clinical isolates induced varying rates of macrophage cell death and the secretion of interleukin-1 family members, such as Il-1andIl-1. Overall, these findings demonstrate that clinical isolates of N. gonorrhoeae utilize OMVs to release major proteins and lipids, which affects innate immune responses.
Project description:Spinal Muscular Atrophy (SMA) is an autosomal recessive motor neuron disease and is the second most common genetic disorder leading to death in childhood. No effective therapy is currently available. It has been suggested that M-NM-2-lactam antibiotics such as ceftriaxone may offer neuroprotection in motoneuron disease. We investigated the therapeutic effect of ceftriaxone in a murine model of SMA. Microarray technology was used to assess the global gene expression profile of spinal cord obtained by ceftriaxone-treated and vehicle treated SMA mice. Comparative Gene Expression Analysis. The microarray data derived from three different groups: wildtype controls, transgenic SMA (vehicle treated) and ceftriaxone-treated SMA mice. Each population consists of four RNA profiling samples.