Project description:Gut microbiome research is rapidly moving towards the functional characterization of the microbiota by means of shotgun meta-omics. Here, we selected a cohort of healthy subjects from an indigenous and monitored Sardinian population to analyze their gut microbiota using both shotgun metagenomics and shotgun metaproteomics. We found a considerable divergence between genetic potential and functional activity of the human healthy gut microbiota, in spite of a quite comparable taxonomic structure revealed by the two approaches. Investigation of inter-individual variability of taxonomic features revealed Bacteroides and Akkermansia as remarkably conserved and variable in abundance within the population, respectively. Firmicutes-driven butyrogenesis (mainly due to Faecalibacterium spp.) was shown to be the functional activity with the higher expression rate and the lower inter-individual variability in the study cohort, highlighting the key importance of the biosynthesis of this microbial by-product for the gut homeostasis. The taxon-specific contribution to functional activities and metabolic tasks was also examined, giving insights into the peculiar role of several gut microbiota members in carbohydrate metabolism (including polysaccharide degradation, glycan transport, glycolysis and short-chain fatty acid production). In conclusion, our results provide useful indications regarding the main functions actively exerted by the gut microbiota members of a healthy human cohort, and support metaproteomics as a valuable approach to investigate the functional role of the gut microbiota in health and disease.
Project description:Whole transcriptome RNA sequencing in brain tissue was generated to explore differences between young and old animals of two closely related species of deer mice (genus Peromyscus) that reportedly differ in their lifespans: P. leucopus that lives for up to 8 years and P. maniculatus that exhibits a lifespan of about 4 years.
Project description:The Lyme disease spirochete Borrelia burgdorferi drives a range of acute and chronic maladies in humans and other incidental hosts infected with the pathogen. However, the primary vertebrate reservoir, Peromyscus leucopus appears spared from any symptomology following infection. This has led to a common hypothesis that P. leucopus and B. burgdorferi exist symbiotically: P. leucopus restrain their immune response against the microbe and enable the enzootic cycle while B. burgdorferi avoids causing damage to the host. While aspects of this hypothesis have been tested, the exact interactions that occur between P. leucopus and B. burgdorferi during infection remain largely unknown. Here we utilized an inbred colony of P. leucopus in order to compare B. burgdorferi (B31) fitness in these rodents to the traditional B. burgdorferi murine models—C57BL/6J and C3H/HeN Mus musculus, which develop signs of inflammation akin to human disease. We find that in contrast to our expectations, B. burgdorferi were able to reach much higher burdens in M. musculus, and that the overall kinetics of infection differed between the two rodent species. Surprisingly, we also found that P. leucopus remained infectious to larval Ixodes scapularis for a far shorter period than either M. musculus strain. In line with these observations, we found that P. leucopus does launch a modest but sustained inflammatory response against B. burgdorferi in the skin, which we hypothesize leads to reduced bacterial viability and infectivity in these hosts. These observations provide new insight into the nature of reservoir species and the B. burgdorferi enzootic cycle.
Project description:Epitope mapping studies aim to identify the binding sites of antibody-antigen interactions to enhance the development of vaccines, diagnostics and immunotherapeutic compounds. However, mapping is a laborious process employing time- and resource-consuming M-bM-^@M-^Xwet benchM-bM-^@M-^Y techniques or epitope prediction software that are still in their infancy. For polymorphic antigens, another challenge is characterizing cross-reactivity between epitopes, teasing out distinctions between broadly cross-reactive responses, limited cross-reactions among variants and the truly type-specific responses. A refined understanding of cross-reactive antibody binding could guide the selection of the most informative subsets of variants for diagnostics and multivalent subunit vaccines. We explored the antibody binding reactivity of sera from human patients and Peromyscus leucopus rodents infected with Borrelia burgdorferi to the polymorphic outer surface protein C (OspC), an attractive candidate antigen for vaccine and improved diagnostics for Lyme disease. We constructed a protein microarray displaying 23 natural variants of OspC and quantified the degree of cross-reactive antibody binding between all pairs of variants, using Pearson correlation calculated on the reactivity values using three independent transforms of the raw data: (1) logarithmic, (2) rank, and (3) binary indicators. We observed that the global amino acid sequence identity between OspC pairs was a poor predictor of cross-reactive antibody binding. Then we asked if specific regions of the protein would better explain the observed cross-reactive binding and performed in silico screening of the linear sequence and 3-dimensional structure of OspC. This analysis pointed to the C-terminal helix of the structure as a major determinant of type-specific cross-reactive antibody binding. We developed bioinformatics methods to systematically analyze the relationship between local sequence/structure variation and cross-reactive antibody binding patterns among variants of a polymorphic antigen, and this method can be applied to other polymorphic antigens for which immune response data is available for multiple variants. Antibody profiling was performed on sera from Borrelia burgdorferi infected and non-infected humans and Peromyscus leucopus rodents against 23 variants of the surface protein OspC . For infected human serum samples, the OspC type of the infecting B. burgdorferi strain is unknown; for experimentally-infected P. leucopus serum samples, it is known. Of human serum samples, 55 were from infected individuals and 25 from naive controls. Of P. leucopus serum samples, 23 were from infected individuals and 7 were from naive controls.