Project description:Zebrafish have been found to be a premier model organism in biological and regeneration research. However, the comprehensive cell compositions and molecular dynamics during tissue regeneration in zebrafish remain poorly understood. Here, we utilized Microwell-seq to analyze more than 250,000 single cells covering major zebrafish cell types and constructed a systematic zebrafish cell landscape. We revealed single-cell compositions for 18 zebrafish tissue types covering both embryo and adult stages. Single-cell mapping of caudal fin regeneration revealed a unique characteristic of blastema population and key genetic regulation involved in zebrafish tissue repair. Overall, our single-cell datasets demonstrate the utility of zebrafish cell landscape resources in various fields of biological research.
Project description:Single-cell mRNA sequencing (scRNA-seq) technologies are reshaping the current cell-type classification system. In previous studies, we built the mouse cell atlas (MCA) and human cell landscape (HCL) to catalog all cell types by collecting scRNA-seq data. However, systematically study for zebrafish (Danio rerio) and fruit fly (Drosophila melanogaster) are still lacking. Here, we construct the zebrafish and Drosophila cell atlas with Microwell-seq protocols, which provides valuable resources for characterization of diverse cell populations of zebrafish and Drosophila, and studying difference between vertebrates and Invertebrates at single cell level.
Project description:Zebrafish have been found to be a premier model organism in biological and regeneration research. However, the comprehensive cell compositions and molecular dynamics during tissue regeneration in zebrafish remain poorly understood. Here, we utilized Microwell-seq to analyze more than 250,000 single cells covering major zebrafish cell types and constructed a systematic zebrafish cell landscape. We revealed single-cell compositions for 18 zebrafish tissue types covering both embryo and adult stages. Single-cell mapping of caudal fin regeneration revealed a unique characteristic of blastema population and key genetic regulation involved in zebrafish tissue repair. Overall, our single-cell datasets demonstrate the utility of zebrafish cell landscape resources in various fields of biological research.
Project description:Single-cell mRNA sequencing (mRNA-seq) technologies are reshaping the current cell-type classification system. In previous studies, we built the mouse cell atlas (MCA) and human cell landscape (HCL) to catalog all cell types by collecting scRNA-seq data. However, systematically study for zebrafish (Danio rerio) and fruit fly (Drosophila melanogaster) are still lacking. Here, we construct the zebrafish and Drosophila cell atlas with Microwell-seq protocols, which provides valuable resources for characterization of diverse cell populations of zebrafish and Drosophila, and studying difference between vertebrates and Invertebrates at single cell level.
Project description:Single-cell mRNA sequencing (scRNA-seq) technologies are reshaping the current cell-type classification system. In previous studies, we built the mouse cell atlas (MCA) and human cell landscape (HCL) to catalog all cell types by collecting scRNA-seq data. However, systematically study for Xenopus laevis is still lacking. Here, we construct the Xenopus cell landscape with Microwell-seq protocols, which provides valuable resources for characterization of diverse cell populations of Xenopus laevis, and studying difference between vertebrates at single cell level.