Project description:The root-colonizing fungal endophyte Serendipita indica, formerly known as Piriformospora indica, is well known to promote plant biomass production and stress tolerance of its host plants. Co-cultivation of Arabidopsis thaliana seedlings with the fungus triggers a substantial induction of the growth of the root system. However, the molecular mechanisms by which the fungus promotes plant growth over an extended period of time is still unclear. We here report the comparative analysis of the effect of a mock- and S. indica-infection on wild-type Arabidopsis plants (Col-0) after 2 and 10 days of co-cultivation. Our data provide evidence for the induction of a number of genes that are consistingly induced during the plant–fungus interaction.
Project description:The root-colonizing endophytic fungus Piriformospora indica promotes root and shoot growth of its host plants. We show that growth promotion of Arabidopsis leaves is abolished when the seedlings are grown on media with nitrogen (N) limitation. The fungus neither stimulated the total N content nor did it promote 15NO3- uptake from agar plates to the leaves of the host under N-sufficient or N-limiting conditions. However, when the roots were co-cultivated with 15N-labelled P. indica, more label can be detected in the leaves of N-starved host plants, but not of plants supplied with sufficient N. Amino acid and primary metabolite profiles, as well as expression analyses of N metabolite transporter genes suggest that the fungus alleviates the adaptation of its host to the N limitation condition. P. indica alters the expression of transporter genes which participate in relocation of NO3-, NH4+ and N metabolites from the roots to the leaves under N limitation. We propose that P. indica participates in the plant´s metabolomic adaptation to N limitation by delivering reduced N metabolites to the host, alleviating metabolic N starvation responses, and reprogramming the expression of N-metabolism related genes.
Project description:The root-colonizing fungal endophyte Serendipita indica, formerly known as Piriformospora indica, is well known to promote plant biomass production and stress tolerance of its host plants. Previous studies highlighted an important role of calcium Ca2+ signaling in the establishment of the plant–fungus interaction. We here report the comparative analysis of the effect of a mock- and S. indica-infection on both wild-type Arabidopsis plants (Col-3) and cbl7 knockout mutants. Our data provide evidence for the involement of the Ca2+ sensor CBL7 in the control of potassium distribution in the plant and in adjusting plant defense responses to allow the establishment of the plant–fungus symbiosis. The impairment of CBL7 was shown to translate into increased induction of plant defense-related genes.
2023-09-05 | GSE242292 | GEO
Project description:Transcriptome analysis of an endophytic fungus Piriformospora indica grown under the salt stress.
Project description:The root-colonizing fungal endophyte Serendipita indica, formerly known as Piriformospora indica, is well known to promote plant biomass production and stress tolerance of its host plants. Moreover, previous studies highlighted an important impact of the fungus on auxin homeostasis during the infection of Arabidopsis thaliana plants. Auxin is a key determinant of plant growth, including the growth of the root system. Auxin overproducing mutants, like for instance YUC9oe (Hentrich et al., 2013 Plant J.), show a pronounced root phenotype that can be restored by the co-cultivation with S. indica. We here report the comparative analysis of the effect of a mock- and S. indica-infection on both wild-type Arabidopsis plants (Col-0) and YUC9 overexpressing mutants. Our data provide evidence for the induction of GRETCHEN HAGEN 3 (GH3) genes that are involved in conjugating active free indole-3-acetic acid with amino acids. The fungus triggered induction GH3s is suggested to be involved in affecting the cellular auxin homeostasis.
Project description:Piriformospora indica, an endophytic fungus of Sebacinales, colonizes the roots of many plant species including Arabidopsis thaliana. The symbiotic interaction promotes plant per-formance, growth and resistance/tolerance against abiotic and biotic stress. We demonstrate that exudated compounds from the fungus activate stress and defense responses in the Arabidopsis roots and shoots before the two partners are in physical contact. They induce stomata closure, stimulate reactive oxygen species (ROS) production, stress-related phytohormone accumulation and activate defense and stress genes in the roots and/or shoots. Once a physical contact is established, the stomata re-open, ROS and phytohormone levels decline, and the gene expression pattern indicates a shift from defense to mutualistic interaction. We propose that exudated compounds from P. indica induce stress and defense responses in the host. Root colonization results in the downregulation of defense responses and the activation of genes involved in promoting plant growth, metabolism and performance.
Project description:Plants coexist in close proximity with numerous microorganisms in their rhizosphere. With certain microorganisms, plants establish mutualistic relationships that can confer physiological benefits to the interacting organisms, including enhanced nutrient assimilation or increased stress tolerance. The root-colonizing endophytic fungi Penicillium chrysogenum, Penicillium minioluteum, and Serendipita indica have been reported to enhance the drought stress tolerance of plants. However, to date, the molecular mechanisms triggered by these fungi in plants remain unexplored. This study presents a comparative analysis of the effects on mock- and fungus-infected tomato plants (var. Moneymaker) under drought stress conditions (40% field capacity) and control conditions (100% field capacity). The findings provide evidence for the induction of common response modules by the fungi.
Project description:We sequenced mRNA and small RNA (sRNA) profiles in the interaction between Brachypodium distachyon (Bd) and Serendipita indica (Si; syn. Piriformospora indica), at four (4) days post inoculation (DPI). mRNA sequencing reads of Si-colonized and non-colonized roots, as well as axenic fungal cultures were generated. Three biological samples of each were sequenced, with two technical replicates per sample (PE).
Project description:We sequenced mRNA and small RNA (sRNA) profiles in the interaction between Brachypodium distachyon (Bd) and Serendipita indica (Si; syn. Piriformospora indica), at four (4) days post inoculation (DPI). sRNA sequencing reads of Si-colonized and non-colonized roots, as well as axenic fungal cultures were generated. Three biological samples of each were sequenced, with two technical replicates per sample (SE). Raw reads from sRNA sequencing were submitted to technical adapter trimming (Cutadapt) before upload.