Project description:We exposed adult delta smelt to varying levels of sublethal thermal stress to quantify the genes involved in their cellular stress response and identify sublethal stress thresholds
Project description:In this project, effects of chronic temperature changes on the transcriptome of the rainbow trout heart (Oncorhynchus mykiss) were examined. Ectothermic animals of north-temperate latitudes experience large seasonal changes in temperature which strongly affect the rate of body functions. To compensate for the effects of temperature changes ectotherms can respond to chronic temperature changes by increasing the quantity of tissue or enzyme needed for different physiological tasks, or by expressing proteins isoforms which are more appropriate for the new thermal conditions. On the other hand, proteins which are needed in lesser amounts in the new thermal regime could be depressed or down-regulated. Although expression of proteins can be changed by multiple mechanisms during synthesis and degradation, temperature dependent changes in transcription of genes is probably the most important factor in modifying the proteome of the tissues. Rainbow trout are active throughout their thermal tolerance range (0-25°C). Maintenance of adequate cardiac function at different thermal conditions requires a thorough change of the cardiac phenotype which appears as compensatory changes in relative heart mass, energy metabolism, nervous and humoral control of cardiac contractility and in electrical and mechanical properties of the trout heart. Such an extensive structural and functional remodeling of the heart probably necessitates both qualitative and quantitative changes among the numerous macromolecules which constitute the cardiac phenotype and cannot, therefore, be solely based on posttranslational modification of proteins but is expected to require differential gene expression. As a power supply of the circulatory system, the heart is in the focal point of physiological plasticity and sets limits for the activity level of the animal in different thermal conditions. Although several aspects of heart function have been studied in thermally acclimated fish and a number of structural changes have been noticed on exposure to different temperatures, the cellular and molecular mechanisms involved in chronic thermal stress of the fish heart are only partially elucidated. An interesting and poorly examined feature of the cold-acclimated phenotype of the trout heart is the increased heart mass which attenuates the depressive effect of low temperature on cardiac pump function. The heart is a complex organ composed of multiple tissues which together provide the system all necessary qualifications for cardiac pump function. In addition to the contractile and metabolic machinery of the cardiac myocytes, the amount and quality of the extracellular matrix also contribute to the properties of the heart as a muscular pump. Due to the complexity of the heart an enormous amounts of research efforts are needed to find out and examine all crucial aspects of cardiac plasticity required for thermal acclimation. In this regard the screening of gene expression by cDNA micro arrays might provide a broader view to genomic basis of cardiac remodeling under changing temperatures and aid to reveal the candidate genes which are important for thermal acclimation and which might remain unnoticed by traditional biochemical and physiological methods. In the present study we the steady-state effects of temperature acclimation on gene expression of the rainbow trout heart were screened by micro array analysis.
Project description:Rainbow smelt (Osmerus mordax) are freeze-resistant fish that accumulate glycerol and produce an antifreeze protein during winter. Quantitative reverse transcription-PCR (qPCR) and subtractive hybridization studies have revealed a few genes in smelt liver to be differentially regulated in winter in comparison with the fall when water temperatures are warmer. In order to further define the suite of processes that are regulated seasonally, we undertook a large-scale analysis of gene expression by hybridization of smelt cDNA to the salmonid 16K cGRASP cDNA microarray. These microarray experiments were conducted as a focused sieving exercise, which identified informative genes for further study in the microarray samples and over a seasonal sampling series using quantitative reverse-transcription PCR.
Project description:In this project, effects of chronic temperature changes on the transcriptome of the rainbow trout heart (Oncorhynchus mykiss) were examined. Ectothermic animals of north-temperate latitudes experience large seasonal changes in temperature which strongly affect the rate of body functions. To compensate for the effects of temperature changes ectotherms can respond to chronic temperature changes by increasing the quantity of tissue or enzyme needed for different physiological tasks, or by expressing proteins isoforms which are more appropriate for the new thermal conditions. On the other hand, proteins which are needed in lesser amounts in the new thermal regime could be depressed or down-regulated. Although expression of proteins can be changed by multiple mechanisms during synthesis and degradation, temperature dependent changes in transcription of genes is probably the most important factor in modifying the proteome of the tissues. Rainbow trout are active throughout their thermal tolerance range (0-25°C). Maintenance of adequate cardiac function at different thermal conditions requires a thorough change of the cardiac phenotype which appears as compensatory changes in relative heart mass, energy metabolism, nervous and humoral control of cardiac contractility and in electrical and mechanical properties of the trout heart. Such an extensive structural and functional remodeling of the heart probably necessitates both qualitative and quantitative changes among the numerous macromolecules which constitute the cardiac phenotype and cannot, therefore, be solely based on posttranslational modification of proteins but is expected to require differential gene expression. As a power supply of the circulatory system, the heart is in the focal point of physiological plasticity and sets limits for the activity level of the animal in different thermal conditions. Although several aspects of heart function have been studied in thermally acclimated fish and a number of structural changes have been noticed on exposure to different temperatures, the cellular and molecular mechanisms involved in chronic thermal stress of the fish heart are only partially elucidated. An interesting and poorly examined feature of the cold-acclimated phenotype of the trout heart is the increased heart mass which attenuates the depressive effect of low temperature on cardiac pump function. The heart is a complex organ composed of multiple tissues which together provide the system all necessary qualifications for cardiac pump function. In addition to the contractile and metabolic machinery of the cardiac myocytes, the amount and quality of the extracellular matrix also contribute to the properties of the heart as a muscular pump. Due to the complexity of the heart an enormous amounts of research efforts are needed to find out and examine all crucial aspects of cardiac plasticity required for thermal acclimation. In this regard the screening of gene expression by cDNA micro arrays might provide a broader view to genomic basis of cardiac remodeling under changing temperatures and aid to reveal the candidate genes which are important for thermal acclimation and which might remain unnoticed by traditional biochemical and physiological methods. In the present study we the steady-state effects of temperature acclimation on gene expression of the rainbow trout heart were screened by micro array analysis. Keywords: parallel sample
Project description:We exposed adult delta smelt to varying levels of sublethal thermal stress to quantify the genes involved in their cellular stress response and identify sublethal stress thresholds Fourty-nine samples were run on fourty-nine arrays, with 3-6 replicates for each treatment or control
Project description:Intertidal zone organisms can experience transient freezing temperatures during winter low tides, but their extreme cold tolerance mechanisms are not known. Petrolisthes cinctipes is a temperate mid-high intertidal zone crab species that can experience wintertime habitat temperatures below the freezing point of seawater. We examined how cold tolerance changed during the initial phase of thermal acclimation to cold and warm temperatures, as well as the persistence of cold tolerance during long-term thermal acclimation. Thermal acclimation for as little as 6 hours at 8˚C enhanced crab tolerance during a 1h exposure to -2°C relative to crabs acclimated to 18˚C. Potential mechanisms for this enhanced tolerance were elucidated using cDNA microarrays to probe for differences in gene expression in cardiac tissue of warm and cold acclimated crabs during the first day of thermal acclimation. No changes in gene expression were detected until 12h of thermal acclimation. Genes strongly upregulated in warm acclimated crabs represented immune response and extracellular / intercellular processes, suggesting that warm acclimated crabs had a generalized stress response and may have been remodelling tissues or altering intercellular processes. Genes strongly upregulated in cold acclimated crabs included many that are involved in glucose production suggesting that cold acclimation involves increasing intracellular glucose as a cryoprotectant. Structural cytoskeletal proteins were also strongly represented among the genes upregulated in only cold acclimated crabs. There were no consistent changes in composition or the level of unsaturation of membrane phospholipid fatty acids with cold acclimation, which suggests that neither short- nor long-term changes in cold tolerance are mediated by changes in membrane fatty acid composition. Overall, our study demonstrates that initial changes in cold tolerance are likely not regulated by transcriptomic responses, but that gene expression-related changes in homeostasis begin within 12 hours – the length of a tidal cycle. all array data and raw images archived at the Porcelain Crab Array Database (http://array.sfsu.edu)
Project description:RNAseq used to examine gene expression in thermal challenged redband rainbow trout RNAseq data obtained from libraries prepared from Gill RNA