Project description:Gastrodia elata Blume (Orchidaceae) is an important Chinese medicine with several functional components. In the life cycle of G. elata, the orchid develops a symbiotic relationship with two compatible mycorrhizal fungi Mycena spp. and Armillaria mellea during seed germination to form vegetative propagation corm and vegetative growth to develop tubers, respectively. Gastrodin (p-hydroxymethylphenol-beta-D-glucoside) is the most important functional component in G. elata, and gastrodin significantly increases from vegetative propagation corms to tubers. To address the gene regulation mechanism in gastrodin biosynthesis in G. elata, a comparative analysis of de novo transcriptome sequencing among the vegetative propagation corms and tubers of G. elata and A. mellea was conducted using deep sequencing. Transcriptome comparison between the vegetative propagation corms and juvenile tubers of G. elata revealed 582 differentially expressed unigenes, of which 415 and 167 genes were, respectively up-regulated (fold-change â?¥ 2, p-value < 0.05) and down-regulated (fold-change â?¤ 0.5, p-value <0.05) in juvenile tubers. After Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, forty-seven up-regulated unigenes with enzyme commission (EC) were assigned to 269 isogroups involved in 100 different pathways, and twenty-four down-regulated unigenes with enzyme commission (EC) were assigned to 586 isogroups, involved in 167 different pathways. The analysis of the isogroup genes from all pathways revealed that the two unigenes at locus 25,051 (one of monooxygenases) and locus 22,288 (one of glycosyltransferases) might participate in hydroxylation and glucosylation in the gastrodin biosynthetic pathway. The gene expression of the two unique unigenes encoding monooxygenase and glycosyltransferase significantly increases from vegetative propagation corms to tubers, and the molecular basis of gastrodin biosynthesis in the tubers of G. elata is proposed. Transcriptome comparative between vegetative propagation corms and tubers of G. elata, and between tubers of G. elata (symbiosis A. mellea) and A. mellea
Project description:Gastrodia elata Blume (Orchidaceae) is an important Chinese medicine with several functional components. In the life cycle of G. elata, the orchid develops a symbiotic relationship with two compatible mycorrhizal fungi Mycena spp. and Armillaria mellea during seed germination to form vegetative propagation corm and vegetative growth to develop tubers, respectively. Gastrodin (p-hydroxymethylphenol-beta-D-glucoside) is the most important functional component in G. elata, and gastrodin significantly increases from vegetative propagation corms to tubers. To address the gene regulation mechanism in gastrodin biosynthesis in G. elata, a comparative analysis of de novo transcriptome sequencing among the vegetative propagation corms and tubers of G. elata and A. mellea was conducted using deep sequencing. Transcriptome comparison between the vegetative propagation corms and juvenile tubers of G. elata revealed 582 differentially expressed unigenes, of which 415 and 167 genes were, respectively up-regulated (fold-change ≥ 2, p-value < 0.05) and down-regulated (fold-change ≤ 0.5, p-value <0.05) in juvenile tubers. After Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, forty-seven up-regulated unigenes with enzyme commission (EC) were assigned to 269 isogroups involved in 100 different pathways, and twenty-four down-regulated unigenes with enzyme commission (EC) were assigned to 586 isogroups, involved in 167 different pathways. The analysis of the isogroup genes from all pathways revealed that the two unigenes at locus 25,051 (one of monooxygenases) and locus 22,288 (one of glycosyltransferases) might participate in hydroxylation and glucosylation in the gastrodin biosynthetic pathway. The gene expression of the two unique unigenes encoding monooxygenase and glycosyltransferase significantly increases from vegetative propagation corms to tubers, and the molecular basis of gastrodin biosynthesis in the tubers of G. elata is proposed.
Project description:In this work, we discussed the effects Acanthopanax senticosus Harms (ASE) combined with Gastrodia elata Blume (GEB) in the treatment of CIR injury. In pharmacodynamic studies, found that co-administration of ASE and GEB may improve neuronal injury and prevent neuronal apoptosis by reducing oxidative stress and inflammation, and also help prevent CIR injury. On the basis of our hypothesis, we combined the results of transcriptomic and metabonomic analyses and found that ASE and GEB could prevent cerebral ischemia-reperfusion injury induced by middle cerebral artery occlusion by targeting phenylalanine, pyrimidine, methionine, and sphingolipid metabolism. This study provides the basis for the compatibility and efficacy of ASE and GEB.