Project description:BackgroundSquirrel poxvirus (SQPV) is highly pathogenic to red squirrels (Sciurus vulgaris), and is a significant contributing factor to the local extinction of the species in most parts of England and Wales, where infection is endemic in Eastern grey squirrel (Sciurus carolinensis) populations. Although a nested PCR assay has been used successfully to study the epidemiology of SQPV, samples have a long processing time and the assay is not quantifiable.ResultsThis project describes the design and optimization of a real-time PCR for SQPV. Comparison with the nested PCR showed the real-time assay to be more sensitive by one log and able to detect approximately 144 genome copies per mg of tissue.ConclusionsThe real-time PCR has been used to quantify viral genome load in tissues from diseased and apparently healthy red and grey squirrels, and suggests that the titre of virus in tissues from diseased red squirrels is considerably higher than that found even in a grey squirrel with cutaneous lesions.
Project description:We present a genome assembly from an individual male Sciurus carolinensis (the eastern grey squirrel; Vertebrata; Mammalia; Eutheria; Rodentia; Sciuridae). The genome sequence is 2.82 gigabases in span. The majority of the assembly (92.3%) is scaffolded into 21 chromosomal-level scaffolds, with both X and Y sex chromosomes assembled.
Project description:Behavioural flexibility allows animals to adjust their behaviours according to changing environmental demands. Such flexibility is frequently assessed by the discrimination-reversal learning task. We examined grey squirrels' behavioural flexibility, using a simultaneous colour discrimination-reversal learning task on a touch screen. Squirrels were trained to select their non-preferred colour in the discrimination phase, and their preferred colour was rewarded in a subsequent reversal phase. We used error rates to divide learning in each phase into three stages (perseveration, chance level and 'learned') and examined response inhibition and head-switching during each stage. We found consistent behavioural patterns were associated with each learning stage: in the perseveration stage, at the beginning of each training phase, squirrels showed comparable response latencies to correct and incorrect stimuli, along with a low level of head-switching. They quickly overcame perseveration, typically in one to three training blocks. In the chance-level stage, response latencies to both stimuli were low, but during initial discrimination squirrels showed more head-switches than in the previous stage. This suggests that squirrels were learning the current reward contingency by responding rapidly to a stimulus, but with increased attention to both stimuli. In the learned stage, response latencies to the correct stimulus and the number of head-switches were at their highest, whereas incorrect response latencies were at their lowest, and differed significantly from correct response latencies. These results suggest increased response inhibition and attention allowed the squirrels to minimise errors. They also suggest that errors in the 'learned' stage were related to impulsive emission of the pre-potent or previously learned responses.
Project description:Inhibiting learned behaviours when they become unproductive and searching for an alternative solution to solve a familiar but different problem are two indicators of flexibility in problem solving. A wide range of animals show these tendencies spontaneously, but what kind of search process is at play behind their problem-solving success? Here, we investigated how Eastern grey squirrels, Sciurus carolinensis, solved a modified mechanical problem that required them to abandon their preferred and learned solution and search for alternative solutions to retrieve out-of-reach food rewards. Squirrels could solve the problem by engaging in either an exhaustive search (i.e., using trial-and-error to access the reward) or a 'backup' solution search (i.e., recalling a previously successful but non-preferred solution). We found that all squirrels successfully solved the modified problem on their first trial and showed solving durations comparable to their last experience of using their preferred solution. Their success and high efficiency could be explained by their high level of inhibitory control as the squirrels did not persistently emit the learned and preferred, but now ineffective, pushing behaviour. Although the squirrels had minimal experience in using the alternative (non-preferred) successful solution, they used it directly or after one or two failed attempts to achieve success. Thus, the squirrels were using the 'backup' solution search process. Such a process is likely a form of generalisation which involves retrieving related information of an experienced problem and applying previous successful experience during problem solving. Overall, our results provide information regarding the search process underlying the flexibility observable in problem-solving success.
Project description:The introduction of the Eastern grey squirrel (Sciurus carolinensis) in Europe is one of the best-known cases of invasive alien species (IAS) colonisation, that poses a severe risk to the conservation of biodiversity. In 2003, it was released in a private wildlife park near the city of Perugia (Italy), where it is replacing the native Eurasian red squirrel (Sciurus vulgaris). The LIFE13 BIO/IT/000204 Project (U-SAVEREDS) was set up for the Sciurus vulgaris conservation in Umbria through an eradication campaign of grey squirrels. One hundred and fifty-four animals were analysed for bacteriological, mycological, virological, and serological investigations (C4 action). Sanitary screening showed that Sciurus carolinensis is a dermatophyte carrier, and therefore, it could cause public health issues for humans, considering its confident behaviour. Moreover, it has been marginally responsible for the spreading of Candida albicans, Coxiella burnetii, and Borrelia lusitaniae. Health status evaluation conducted on the Sciurus carolinensis population indicated that it is necessary to raise awareness of its impacts on biodiversity and human health. Moreover, the health status and behaviours of the IAS must be considered when control or eradication campaigns are planned.