Project description:The objective was to identify functional genes encoded by Fungi and fungal-like organisms to assess putative ecological roles Using the GeoChip microarray, we detected fungal genes involved in the complete assimilation of nitrate and the degradation of lignin, as well as evidence for Partitiviridae (a mycovirus) that likely regulates fungal populations in the marine environment. These results demonstrate the potential for fungi to degrade terrigenously-sourced molecules, such as permafrost and compete with algae for nitrate during blooms. Ultimately, these data suggest that marine fungi could be as important in oceanic ecosystems as they are in freshwater environments.
Project description:A metagenomic library of sea sediment metagenome containing 245,000 recombinant clones representing ~ 2.45 Gb of sea sediment microbial DNA was constructed. Two unique arsenic resistance clones, A7 and A12, were identified by selection on sodium arsenite containing medium. Clone A7 showed a six-fold higher resistance to arsenate [As(V)], a three-fold higher resistance to arsenite [As(III)] and significantly increased resistance to antimony [Sb(III)], while clone A12 showed increased resistance only to sodium arsenite and not to the other two metalloids. The clones harbored inserts of 8.848 Kb and 6.771 Kb, respectively. Both the clones possess A + T rich nucleotide sequence with similarity to sequences from marine psychrophilic bacteria. Sequence and transposon-mutagenesis based analysis revealed the presence of a putative arsenate reductase (ArsC), a putative arsenite efflux pump (ArsB/ACR) and a putative NADPH-dependent FMN reductase (ArsH) in both the clones and also a putative transcriptional regulatory protein (ArsR) in pA7. The increased resistance of clone A7 to As(V), As(III) and Sb(III) indicates functional expression of ArsC and ArsB proteins from pA7. The absence of increased As(V) resistance in clone A12 may be due to the expression of a possible inactive ArsC, as conserved Arg60 residue in this protein was replaced by Glu60, while the absence of Sb(III) resistance may be due to the presence of an ACR3p-type arsenite pump, which is known to lack antimony transport ability.
Project description:Degradation of polycyclic aromatic hydrocarbons (PAHs) such as naphthalene by anaerobic microorganisms is poorly understood. Strain NaphS2, an anaerobic sulfate reducing marine delta-proteobacterium is capable of using naphthalene and the aromatic compound benzoate, as well as pyruvate, as an electron donors in the presence of sulfate. In order to identify genes involved in the naphthalene degradation pathway, we compared gene expression in NaphS2 during growth on benzoate vs. pyruvate, naphthalene vs. pyruvate, and naphthalene vs benzoate.
Project description:Degradation of polycyclic aromatic hydrocarbons (PAHs) such as naphthalene by anaerobic microorganisms is poorly understood. Strain NaphS2, an anaerobic sulfate reducing marine delta-proteobacterium is capable of using naphthalene and the aromatic compound benzoate, as well as pyruvate, as an electron donors in the presence of sulfate. In order to identify genes involved in the naphthalene degradation pathway, we compared gene expression in NaphS2 during growth on benzoate vs. pyruvate, naphthalene vs. pyruvate, and naphthalene vs benzoate. For each experimental set, aRNA from NaphS2 was labelled Cy5 (experiment) or Cy3(control) with three biological replicates hybridized in duplicate. In addition, because of the size of the predicted genome of NaphS2, ORFs were divided into two separate array designs, designated set1 and set2, such that set1 and set2 represent two separate array designs (probe sets) to be treated separately in statistical analysis.
Project description:Nitrogenase is the key enzyme involved in nitrogen fixation and uses low potential electrons delivered by ferredoxin or flavodoxin to reduce dinitrogen gas (N2) to produce ammonia and hydrogen. Although the phototrophic alphaproteobacterium Rhodopseudomonas palustris encodes many proteins that can reduce ferredoxin, the electron bifurcating FixABCX complex is the only one shown to support nitrogen fixation. To gain insight into why R. palustris is unable to use these other enzymes to reduce ferredoxin in the absence of FixABCX, we isolated a suppressor of R. palustris DfixC that allowed this strain to grow under nitrogen-fixing conditions. We found two mutations were necessary and sufficient to restore growth under nitrogen-fixing conditions in the absence of a functional FixABCX. One mutation was in the primary ferredoxin involved in nitrogen fixation, fer1, and the other mutation was in rpa0678, a homolog of NAD+-dependent ferredoxin:NADPH oxidoreductase, which carries out flavin-based electron bifurcation to generate reduced Fd. We present evidence that Rpa0678 plays a role in electron transfer to benzoyl-CoA reductase, the key enzyme involved in anaerobic aromatic compound degradation. Together these findings indicate that the electron transfer pathway for anaerobic aromatic compound degradation was re-purposed to support nitrogen fixation in the suppressor strain.
Project description:Microplastics represent a growing environmental concern for the oceans due to their potential capability to adsorb different classes of pollutants, thus representing a still unexplored source of exposure for aquatic organisms. In this study polystyrene (PS) microplastics were characterized for their capability to adsorb pyrene (PYR) as model compound for polycyclic aromatic hydrocarbons, and transfer this chemical to filter feeding mussels Mytilus galloprovincialis. Gene expression analyses of Mytilus galloprovincialis exposed to polystyrene (PS) microplastics and to polystyrene contaminated with pyrene (PS-PYR) have been performed trough a DNA microarray platform.
Project description:Tidal marsh and estuarine marine microbial sediment metagenomes from the Great Bay Estuary of New Hampshire were sequenced and found to be dominated by Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria. Both types of sediment contained many unclassified bacterial sequences, including the mollusk pathogen Perkinsus marinus, and detectable xenobiotic degradation and nitrogen transformation genes.