Project description:Bathymodiolin mussels are a group of bivalves associated with deep-sea reducing habitats, such as hydrothermal vents and cold seeps. These mussels usually engage in an obligatory symbiosis with sulfur and/or methane oxidizing Gammaproteobacteria. In addition to these bacteria, Bathymodiolus heckerae that inhabit gas and oil seeps in Campeche Bay, the southern Gulf of Mexico, host bacteria phylogenetically with the Cycloclasticus genus. We recently discovered the capability for short-chain alkane degradation in draft genomes of symbiotic Cycloclasticus. With proteomics, we investigated whether the genes required for this process are expressed by the symbionts.
Project description:As part of our investigations on the chemical diversity of organisms from unexplored marine habitats of Mexico, a series of 29 fungal strains isolated from deep-sea sediments (more than 600 m deep) from the Gulf of Mexico were investigated. The antimicrobial potential of their organic extracts from solid cultures grown under the OSMAC approach was assessed against a panel of ESKAPE bacteria and the yeast C. albicans. Chemical studies on the active scaled-up cultures and some small-scale cultures led to the isolation of benzochromenones from Alternaria sp. CIGOM4, benzodiazepines from P. echinulatum CONTIG4, a cytochalsin from Biatriospora sp. CIGOM2, and an imidazopyridoindole from Penicillium sp. CIGOM10. Molecular network analysis by GNPS combined with manual dereplication showed the enormous potential of these fungi to produce bioactive compounds.
Project description:As part of our investigations on the chemical diversity of organisms from unexplored marine habitats of Mexico, a series of 29 fungal strains isolated from deep-sea sediments (more than 600 m deep) from the Gulf of Mexico were investigated. The antimicrobial potential of their organic extracts from solid cultures grown under the OSMAC approach was assessed against a panel of ESKAPE bacteria and the yeast C. albicans. Chemical studies on the active scaled-up cultures and some small-scale cultures led to the isolation of benzochromenones from Alternaria sp. CIGOM4, benzodiazepines from P. echinulatum CONTIG4, a cytochalsin from Biatriospora sp. CIGOM2, and an imidazopyridoindole from Penicillium sp. CIGOM10. Molecular network analysis by GNPS combined with manual dereplication showed the enormous potential of these fungi to produce bioactive compounds.
Project description:As part of our investigations on the chemical diversity of organisms from unexplored marine habitats of Mexico, a series of 29 fungal strains isolated from deep-sea sediments (more than 600 m deep) from the Gulf of Mexico were investigated. The antimicrobial potential of their organic extracts from solid cultures grown under the OSMAC approach was assessed against a panel of ESKAPE bacteria and the yeast C. albicans. Chemical studies on the active scaled-up cultures and some small-scale cultures led to the isolation of benzochromenones from Alternaria sp. CIGOM4, benzodiazepines from P. echinulatum CONTIG4, a cytochalsin from Biatriospora sp. CIGOM2, and an imidazopyridoindole from Penicillium sp. CIGOM10. Molecular network analysis by GNPS combined with manual dereplication showed the enormous potential of these fungi to produce bioactive compounds.
Project description:As part of our investigations on the chemical diversity of organisms from unexplored marine habitats of Mexico, a series of 29 fungal strains isolated from deep-sea sediments (more than 600 m deep) from the Gulf of Mexico were investigated. The antimicrobial potential of their organic extracts from solid cultures grown under the OSMAC approach was assessed against a panel of ESKAPE bacteria and the yeast C. albicans. Chemical studies on the active scaled-up cultures and some small-scale cultures led to the isolation of benzochromenones from Alternaria sp. CIGOM4, benzodiazepines from P. echinulatum CONTIG4, a cytochalsin from Biatriospora sp. CIGOM2, and an imidazopyridoindole from Penicillium sp. CIGOM10. Molecular network analysis by GNPS combined with manual dereplication showed the enormous potential of these fungi to produce bioactive compounds.
Project description:As part of our investigations on the chemical diversity of organisms from unexplored marine habitats of Mexico, a series of 29 fungal strains isolated from deep-sea sediments (more than 600 m deep) from the Gulf of Mexico were investigated. The antimicrobial potential of their organic extracts from solid cultures grown under the OSMAC approach was assessed against a panel of ESKAPE bacteria and the yeast C. albicans. Chemical studies on the active scaled-up cultures and some small-scale cultures led to the isolation of benzochromenones from Alternaria sp. CIGOM4, benzodiazepines from P. echinulatum CONTIG4, a cytochalsin from Biatriospora sp. CIGOM2, and an imidazopyridoindole from Penicillium sp. CIGOM10. Molecular network analysis by GNPS combined with manual dereplication showed the enormous potential of these fungi to produce bioactive compounds.
Project description:Bathymodiolus childressi is a species of deep-sea mussels found predominantly in the Gulf of Mexico. It colonizes cold seeps such as brine pool and oil seeps. The success of these animals in such environment is thought to be due to the symbiotic association of the mussel host with several species of bacteria. The aim of this study is to understand the role of the different partners involved in the symbiotic system using various “-omics” approaches. In addition to protein identification we used the mass spectrometry data generated and submitted with this project to derive the stable carbon isotope ratios for the different members of the symbiosis using the direct Protein-SIF method. The respective isotope pattern file and SIF computation files are included with this submission.
2020-02-27 | PXD008089 | Pride
Project description:Deep-sea fungi from the Gulf of California
Project description:Ammonia-oxidizing archaeal (AOA) amoA diversity and relative abundance in Gulf of Mexico sediments (0-2 cm) were investigated using a functional gene microarray; a two color array with a universal internal standard
2013-03-01 | GSE42286 | GEO
Project description:Deep water Meiofauna from Gulf of Mexico