Project description:Fusarium graminearum (teleomorph Gibberella zeae) is a prominent pathogen that infects major cereal crops, such as wheat, barley, and maize. To dissect molecular mechanisms for initial stage of perithecia development, we compared transcriptomes of fungal cultures harvested from F. graminearum wild-type strain Z-3639, abaA, and fpo1 at 1 day after sexual induction. 9 samples examined: Fungal cultures harvested from Fusarium graminearum wild-type strain Z-3639, abaA, and fpo1 at 1 day after sexual induction.
Project description:This study aimed to identify changes in Arabidopsis thaliana microRNAs during the early stages of infection by the fungal pathogen Fusarium graminearum. This study is relevant to Agriculture, as F. graminearum is a major pathogen of cereal crops; microRNAs provide a rapid and early response by the plant to trigger changes in expression of genes involved in limiting the infection and immunity.
Project description:Salicylic acid (SA) is one of the key signal molecules in regulating plant resistance to diverse pathogens. It is predominantly associated with resistance against biotrophic and hemibiotrophic pathogens, and triggering systemic acquired resistance (SAR) in Arabidopsis. However, whether and how SA directly affects Fusarium graminearum and how SA influences the defence efficiency of wheat against fusarium head blight (FHB) are still poorly understood. Previous experiments have shown that the growth of F. graminearum mycelia and the germination of spores were significantly inhibited, and eventually stopped by increasing amounts of SA in both liquid and solid media cultures. Co-inoculation of SA and Fg spores has led to reduced FHB symptoms in the very susceptible Triticum aestivum cultivar ‘Roblin’. To better understand the effect of SA on F. graminearum mycelial growth, we have compared the expression profiles of SA-treated and untreated F. graminearum liquid cultures after 8 and 24 h of treatment, using an F. graminearum custom-commercial microarray. The microarray analysis suggests that F. graminearum can metabolize SA through two pathways, the gentisate and catechol pathways that are present in many fungal species. Additional experiments have confirmed the capacity of F. graminearum to metabolize SA. Our results demonstrate that, although F. graminearum has the capacity to metabolize SA, SA has a significant and direct impact on F. graminearum through a reduction in efficiency of germination and growth at higher concentrations. Untreated and Salicylic Acid (SA) treated liquid cultures of F. graminearum at 8h and 24h collection times. Three biological replicates per time point and treatment, 2 technical replicates (dye flips) per sample.
Project description:In this study, RNA-seq based comparative transcriptome analysis was used to study the response between Fusarium graminearum and Ustilago maydis to different growth conditions. RNA-seq libraries were generated from fungal filaments growing in culture (complete medium) and from infected maize silk. This data set contains the data for the Fusarium graminearum and Ustilago maydis medium growth condition.
Project description:Fusarium graminearum (teleomorph Gibberella zeae) is a prominent pathogen that infects major cereal crops, such as wheat, barley, and maize. To dissect cellular responses toward heat stress in the plant pathogenic fungus F. graminearum, we compared transcriptomes of the fungal cultures incubated in normal temperature condition (25 ºC) and in high temperature condition (37 ºC) for 15 min. 6 samples examined: 24 h-old mycelia from complete medium (CM) of Fusarium graminearum wild-type Z-3639 were incubated in normal temperature condition (25 ºC) and in high temperature condition (37 ºC) for 15 min.
Project description:Fusarium graminearum (teleomorph Gibberella zeae) is a prominent pathogen that infects major cereal crops, such as wheat, barley, and maize. Fhs1 contains a Zn(II)2Cys6 fungal-type DNA-binding domain and localized to nuclei , suggesting that Fhs1 is a transcription factor required for hydroxiurea. 6 samples examined: 24 h after inoculation of Fusarium graminearum wild-type Z-3639 and fhs1 (Îfhs1::GEN) strains in complete media
Project description:This experiment is to assess the changes of maize genes expression in response to Fusarium graminearum stains wild-type PH-1 and Δcfem1 mutant. F. graminearum is the major casual fungal pathogen of Gibberella stalk rot on maize.
Project description:Salicylic acid (SA) is one of the key signal molecules in regulating plant resistance to diverse pathogens. It is predominantly associated with resistance against biotrophic and hemibiotrophic pathogens, and triggering systemic acquired resistance (SAR) in Arabidopsis. However, whether and how SA directly affects Fusarium graminearum and how SA influences the defence efficiency of wheat against fusarium head blight (FHB) are still poorly understood. Previous experiments have shown that the growth of F. graminearum mycelia and the germination of spores were significantly inhibited, and eventually stopped by increasing amounts of SA in both liquid and solid media cultures. Co-inoculation of SA and Fg spores has led to reduced FHB symptoms in the very susceptible Triticum aestivum cultivar ‘Roblin’. To better understand the effect of SA on F. graminearum mycelial growth, we have compared the expression profiles of SA-treated and untreated F. graminearum liquid cultures after 8 and 24 h of treatment, using an F. graminearum custom-commercial microarray. The microarray analysis suggests that F. graminearum can metabolize SA through two pathways, the gentisate and catechol pathways that are present in many fungal species. Additional experiments have confirmed the capacity of F. graminearum to metabolize SA. Our results demonstrate that, although F. graminearum has the capacity to metabolize SA, SA has a significant and direct impact on F. graminearum through a reduction in efficiency of germination and growth at higher concentrations.
Project description:The plant pathogenic fungus Fusarium graminearum (Fgr) creates economic and health risks in cereals agriculture. Fgr causes head blight (or scab) of wheat and stalk rot of corn, reducing yield, degrading grain quality and polluting downstream food products with mycotoxins. Fungal plant pathogens must secrete proteases to access nutrition and to breakdown the structural protein component of the plant cell wall. Research into the proteolytic activity of Fgr is hindered by the complex nature of the suite of proteases secreted. We used a systems biology approach comprising genome analysis, transcriptomics and label-free quantitative proteomics to characterise the peptidases deployed by Fgr during growth. A combined analysis of published microarray transcriptome datasets revealed seven transcriptional groupings of peptidases based on in vitro growth, in planta growth, and sporulation behaviours. An orbitrap MS/MS proteomics technique defined the extracellular proteases secreted by Fusarium graminearum.
Project description:Fusarium graminearum (teleomorph Gibberella zeae) is a prominent pathogen that infects major cereal crops, such as wheat, barley, and maize. To dissect molecular mechanisms of small non-coding RNA-mediated gene regulation during ascospore production, we compared small RNA transcriptomes of fungal cultures harvested from F. graminearum wild-type strain Z-3639 and RNAi component mutants at 5 days after sexual induction.