Project description:Background: Prevention of hyperlipidemia and associated diseases is a health priority. Complementary medicine based on scientific evidence has recently recognized the potential of natural products for modulating lipid metabolism, such as the medicinal mushroom Ganoderma lucidum (Gl), which possesses hypocholesterolemic, prebiotic and antidiabetic properties. Methods: Whole-transcriptomic changes in liver and kidney from a mouse model (C57BL/6), under a high-cholesterol diet and standardized Gl extracts (Gl-1, Gl-2) or simvastatin administration, were analyzed to determine Gl hypocholesterolemic activity. Further effects of Gl extracts on lipid metabolism were evaluated using an in vitro hepatic-like macrophage model. Additionally, correlations among hepatic gene expression, microbiota and serum lipid profiles in vivo established by Gl extracts were evaluated. Results: Based on the hepatic and renal mRNA profiles of mice treated with Gl extracts and high-cholesterol diet, we identified relevant metabolic pathways modulated by Gl involving the restriction of lipid biosynthesis and the enrichment of lipid degradation and secretion. We further showed that Gl extracts induce a significant decrease of macrophage lipid storage and cholesterol biosynthesis, which occurs concomitantly by the down-modulation of Fasn and Elovl6. We also determined that prebiotic effects of Gl extracts modulating gut microbiota are correlated with the gene expression portraits. Conclusions: Our high-throughput analysis allowed to identify key transcriptomic nodes established by Gl extracts and their interaction with microbiome composition related to lipid catabolic signaling. Our results indicated that our Gl extracts have a robust potential to be used as transcriptome modulators and prebiotic agents to prevent metabolic disorders associated to hypercholesterolemia.
Project description:Dietary lipids and gut microbiota may both influence adipose tissue physiology. By feeding conventional and germ-free mice high fat diets with different lipid compositon we aimed to investigate how dietary lipids and the gut microbiota interact to influence inflammation and metabolism in the liver Wild-type C57Bl/6 male mice 11 weeks of age were fed isocaloric diets (45% kcal fat) with either menhaden fish oil (Research Diets, D05122102) or lard (Research Diets, D10011202) for 11 weeks. Liver samples were harvested at the end of the experiment and analyzed by microarray.
Project description:Dietary lipids and gut microbiota may both influence adipose tissue physiology. By feeding conventional and germ-free mice high fat diets with different lipid compositon we aimed to investigate how dietary lipids and the gut microbiota interact to influence inflammation and metabolism in epididymal adipiose tissue (EWAT) Wild-type C57Bl/6 male mice 11 weeks of age were fed isocaloric diets (45% kcal fat) with either menhaden fish oil (Research Diets, D05122102) or lard (Research Diets, D10011202) for 11 weeks. Epididymal WAT samples were harvested at the end of the experiment and analyzed by microarray.
Project description:Gut microbiota plays an important role during early development via bidirectional gut- brain signaling. We aimed to explore the potential link between gut microbiota/gut derived metabolites and sympathoadrenal stress responsivity
Project description:Intracerebral hemorrhage (ICH) induces alterations in the gut microbiota composition, significantly impacting neuroinflammation post-ICH. However, the impact of gut microbiota absence on neuroinflammation following ICH-induced brain injury remain unexplored. Here, we observed that the gut microbiota absence was associated with reduced neuroinflammation, alleviated neurological dysfunction, and mitigated gut barrier dysfunction post-ICH. In contrast, recolonization of microbiota from ICH-induced SPF mice by transplantation of fecal microbiota (FMT) exacerbated brain injury and gut impairment post-ICH. Additionally, microglia with transcriptional changes mediated the protective effects of gut microbiota absence on brain injury, with Apoe emerging as a hub gene. Subsequently, Apoe deficiency in peri-hematomal microglia was associated with improved brain injury. Finally, we revealed that gut microbiota influence brain injury and gut impairment via gut-derived short-chain fatty acids (SCFA).
Project description:Microbiota from rats fed with wheat aleurone and plant omega fatty acids In this study we investigated how an AX-rich WA and ALA from linseed oil (LO) modulate the gut microbiota of rats. Wistar rats were fed a standard diet and received either an iso-energetic control oil (PO), control oil + aleurone (A+PO), linseed oil (LO) or linseed oil + aleurone (A+LO) during 12 weeks. Feacal samples were recovered after the 12 week treatments. DNA extractions were performed using using the Qiagen's DNA Stool Kit (Qiagen, West Sussex, UK). 10ng of DNA template were amplified by PCR (16S gene) and purified using Qiagen's Qiaquick PCR purification kit (Qiagen, West Sussex, UK). 1ug of purified PCR product were labelled with either Cy3 or Cy5 using Genomic DNA ULS Labelling kit (Agilent Technologies, Palo Alto, CA). 250ng of labelled DNA were hybridized on the microarray for 24h at 65M-BM-0C. Washings were performed as recommended by the manufacturer. Microarray scanning was performed on a Surescan Microarray scanner (Agilent Technologies, Palo Alto, CA). Data were extracted using the Feature extraction software (Agilent Technologies, Palo Alto, CA). The retained intensity value for each probe was the ratio between the spotM-bM-^@M-^Ys median intensity signals and the median of background signals. A 13 chip study was realized to analyze the feacal microbiota of rats treated with either an iso-energetic control oil (PO), control oil + aleurone (A+PO), linseed oil (LO) or linseed oil + aleurone (A+LO) during 12 weeks. Each microarray corresponding to hybridization with 250ng of labelled 16S rRNA gene amplicons from 2 rat DNA faecal samples. Microbiota structure and diversity were assessed using the HuGChip (Tottey et al., 2013). Each probe (4441) was synthetized in three replicates. On the same array, 2 different samples were hybridized. One labelled with the Cy3 dye and one with the Cy5 dye. The results were processed as single channel (13 raw data files available on Series records for 25 samples).
Project description:We studied the effect of dietary fat type, varying in polyunsaturated/saturated fatty acid ratio's (P/S) on development of metabolic syndrome. C57Bl/6J mice were fed purified high-fat diets (45E% fat) containing palm oil (HF-PO; P/S 0.4), olive oil (HF-OO; P/S 1.1) or safflower oil (HF-SO; P/S 7.8) for 8 weeks. A low-fat palm oil diet (LF-PO; 10E% fat) was used as a reference. Additionally, we analyzed diet-induced changes in gut microbiota composition and mucosal gene expression. The HF-PO diet induced a higher body weight gain and liver triglyceride content compared to the HF-OO, HF-SO or LF-PO diet. In the intestine, the HF-PO diet reduced microbial diversity and increased the Firmicutes/Bacteroidetes ratio. Although this fits a typical obesity profile, our data clearly indicate that an overflow of the HF-PO diet to the distal intestine, rather than obesity itself, is the main trigger for these gut microbiota changes. A HF-PO diet-induced elevation of lipid metabolism-related genes in the distal small intestine confirmed the overflow of palm oil to the distal intestine. Some of these lipid metabolism-related genes were previously already associated with the metabolic syndrome. In conclusion, our data indicate that saturated fat (HF-PO) has a more stimulatory effect on weight gain and hepatic lipid accumulation than unsaturated fat (HF-OO and HF-SO). The overflow of fat to the distal intestine on the HF-PO diet induced changes in gut microbiota composition and mucosal gene expression. We speculate that both are directly or indirectly contributive to the saturated fat-induced development of obesity and hepatic steatosis. Keywords: Diet intervention study Nine-week-old C57Bl/6J mice were fed a low-fat diet (LF-PO) and three different types of high-fat diet, based on palm oil (HF-PO; P/S1.0), olive oil (HF-OO; P/S4.6) and safflower oil (HF-SO; P/S10.1) for 8 weeks. Body weight was recorded weekly and after 7 weeks of diet intervention an oral glucose tolerance test was performed. After 2 weeks of diet intervention, 6 mice per high-fat diet group were anaesthetized with a mixture of isofluorane (1.5%), nitrous oxide (70%) and oxygen (30%) and the small intestines were excised. Adhering fat and pancreatic tissue were carefully removed. The small intestines were divided in three equal parts along the proximal to distal axis (SI 1, SI 2 and SI 3) and microarray analysis was performed on mucosal scrapings.
Project description:Dietary fats have been shown to affect gut microbiota composition and aging gene transcription of middle-aged rats at a normal dose, but little is known about such an effect on gut barrier. In colon, the main component of mucus layer is Muc2, produced by the goblet cells. This study investigated the changes in Muc2 expression, goblet cells proliferation, TLRs and inflammatory cytokines in the colon of middle-aged rats. Proteome technology was applied to explore the possible molecular mechanisms. The results indicated that intake of fish oil at a normal dose downregulated colonic Muc2 expression, and this negative effect of fish oil probably involved the suppression of mucin glycosylation process.
Project description:Urolithin A is a polyphenol derived from the multi-step metabolism of dietary ellagitannins by the human gut microbiota which can affect host health. Most, but not all, individuals harbor a microbiota capable of urolithin A production; however, the enzymes that dehydroxylate its dietary precursor, urolithin C, are unknown. Here, we used a combination of transcriptomics and proteomics to reveal a urolithin C dehydroxylase (ucd) operon that dehydroxylates 9-hydroxy urolithin compounds in Enterocloster spp. Using comparative genomics, we identified Lachnoclostridium pacaense as a novel urolithin C metabolizer. Biochemical characterization and structure predictions of proteins in the Ucd complex demonstrated that dehydroxylation was both NADH- and molybdopterin-dependent and used urolithin C as a terminal electron acceptor. A meta-analysis publicly available metagenomic data revealed that both bacteria and ucd operon genes are widely distributed in gut metagenomes and likely comprise keystone species in the metabolism of urolithins by the human gut microbiota.