Project description:In animal gonads, 23-30nt long PIWI interacting RNAs (piRNAs) guarantee genome integrity by guiding the sequence specific silencing of selfish genetic elements such as transposons. Two major branches of piRNA biogenesis, namely primary processing and ping-pong amplification, feed into the PIWI clade of Argonaute proteins. Despite our conceptual understanding of piRNA biogenesis, major gaps exist in the mechanistic understanding of the underlying molecular processes as well as in the knowledge of the involved players. Here, we demonstrate an essential role for the female sterility gene shutdown in the piRNA pathway. Shutdown, an evolutionarily conserved co-chaperone of the immunophilin class is the first piRNA biogenesis factor that is essential for all primary and secondary piRNA populations in Drosophila. Based on these findings, we define distinct groups of piRNA biogenesis factors and reveal the core concept of how PIWI family proteins are hard-wired into piRNA biogenesis processes.
Project description:In animal gonads, 23-30nt long PIWI interacting RNAs (piRNAs) guarantee genome integrity by guiding the sequence specific silencing of selfish genetic elements such as transposons. Two major branches of piRNA biogenesis, namely primary processing and ping-pong amplification, feed into the PIWI clade of Argonaute proteins. Despite our conceptual understanding of piRNA biogenesis, major gaps exist in the mechanistic understanding of the underlying molecular processes as well as in the knowledge of the involved players. Here, we demonstrate an essential role for the female sterility gene shutdown in the piRNA pathway. Shutdown, an evolutionarily conserved co-chaperone of the immunophilin class is the first piRNA biogenesis factor that is essential for all primary and secondary piRNA populations in Drosophila. Based on these findings, we define distinct groups of piRNA biogenesis factors and reveal the core concept of how PIWI family proteins are hard-wired into piRNA biogenesis processes. small-RNA libraries from 2 control samples and 7 knock-down samples of D. mel. ovaries and 2 small-RNA profiles from Piwi IP and Aub IP from OSCs.
Project description:The retinal ganglion cell (RGC) competence factor ATOH7 is dynamically expressed during retinal histogenesis. ATOH7 transcription is controlled by a promoter-adjacent primary enhancer and a remote shadow enhancer (SE). Deletion of the ATOH7 human SE causes non‑syndromic congenital retinal non-attachment (NCRNA) disease, characterized by optic nerve aplasia and total blindness. We used genome editing to model NCRNA in mice. Deletion of the murine SE reduces Atoh7 mRNA >5-fold, but does not recapitulate optic nerve loss; however, SEdel/KO (knockout) trans heterozygotes have thin optic nerves. By analyzing Atoh7 mRNA and protein levels, RGC development and survival, and chromatin landscape effects, we show how the SE ensures robust Atoh7 transcriptional output. Combining SE deletion, KO and wild-type alleles in a genotypic series, we determined the amount of Atoh7 needed to produce a normal complement of adult RGCs, and the secondary consequences of graded reductions in Atoh7 dosage. Together these data reveal the workings of an evolutionary fail-safe, a duplicate enhancer mechanism hard-wired in the machinery of vertebrate retinal ganglion cell genesis.
2020-08-25 | GSE146897 | GEO
Project description:microbial diversity on bioanode
Project description:Although the mammalian rest-activity cycle is controlled by a "master clock" in the suprachiasmatic nuclei (SCN) of the hypothalamus, it is unclear how firing of individual SCN neurons gates individual features of daily activity. Here, we demonstrate that a specific transcriptomically identified population of mouse VIP+ SCN neurons is active at the "wrong" time of the day -nighttime- when most SCN neurons are silent. Using chemogenetic and optogenetic strategies, we show that these neurons and their cellular clocks are necessary and sufficient to gate and time nighttime sleep, but have no effect upon daytime sleep. We propose mouse nighttime sleep, analogous to the human siesta, is a "hard-wired" property gated by specific neurons of the master clock to favor subsequent alertness prior to dawn (a circadian "wake maintenance zone"). Thus, the SCN is not simply a 24h metronome: specific populations sculpt critical features of the sleep-wake cycle.
Project description:Neuronal diversification is a fundamental step in the construction of functional neural circuits, yet how neurons generated from single progenitor domains acquire diverse subtype identities remains poorly understood. Here, we developed a stem cell-based system to model subtype diversification of V1 interneurons, a class of spinal neurons comprising four clades, each containing dozens of molecularly distinct neuronal subtypes. We demonstrate that V1 subtype diversity is not hard-wired and can be modified by extrinsic signals. Inhibition of Notch and activation of retinoid signaling results in a switch to MafA clade identity and enriches differentiation of Renshaw cells, a specialized MafA subtype that mediates recurrent inhibition of spinal motor neurons. We show that in vitro-generated Renshaw cells migrate into appropriate spinal laminae upon transplantation and form subtype-specific synapses with motor neurons. Our results demonstrate that stem cell-derived neuronal subtypes can be used to investigate mechanisms underlying neuronal subtype specification and circuit assembly.
Project description:Shine-Dalgarno (SD) motifs are thought to play an important role in translational initiation in bacteria. Paradoxically, ribosome profiling studies in E. coli show no correlation between the strength of the SD in an mRNA and how efficiently it is translated. Performing profiling on ribosomes with altered anti-Shine-Dalgarno sequences, we reveal a genome-wide correlation between SD strength and ribosome occupancy that was previously masked by other contributing factors. Using the antibiotic retapamulin to trap initiation complexes at start codons, we find that the mutant ribosomes select start sites correctly, arguing that start sites are hard-wired for initiation through the action of other mRNA features. We show that A-rich sequences upstream of start codons promote initiation. Taken together, our genome-wide study reveals that SD motifs are not necessary for the ribosome to select where initiation occurs, though they do affect how efficiently initiation occurs at sites whose other features support initiation.
Project description:NUP98-fusion proteins cause acute myeloid leukemia via unknown molecular mechanisms. All NUP98-fusion proteins share an intrinsically disordered region (IDR) featuring >35 repeats of Phenylalanine-Glycine (FG) in the NUP98 N-terminus. Conversely, different C-terminal NUP98-fusion partners are often transcriptional and epigenetic regulators. Given these structural features we hypothesized that mechanisms of oncogenic transformation by NUP98-fusion proteins are hard-wired in their protein interactomes. Affinity purification coupled to mass spectrometry of five distinct NUP98-fusion proteins revealed a conserved set of interactors that was highly enriched for proteins involved in biomolecular condensation. We developed biotinylated isoxazole-mediated condensome mass spectrometry (biCon-MS) to show that NUP98-fusion proteins alter the global composition of biomolecular condensates. In addition, an artificial FG-repeat containing fusion protein was able to phenocopy the induction of leukemic gene expression as mediated by NUP98-KDM5A. Thus, we propose that IDR-containing fusion proteins have evolved to uniquely combine biomolecular condensation with gene control to induce cancer.
Project description:We generated a new recombinant protein HARD (High-affinity RNA-binding Domain) with non-sequence-specific high-affinity on RNAs and developed the immobilized-HARD protein-mediated RNA affinity purification approach (HARD-AP).We showed that HARD-AP successfully captured all RNA biotypes.