Project description:The number and overlapping substrate repertoire of multidrug efflux pumps in the E. coli genome suggest a physiological role apart from multidrug resistance. This role was investigated using transcriptomic analyses of cDNAs labeled from E. coli AG102 mRNA (hyper drug resistant, marR1) and its isogenic major efflux pump mutants. Keywords: Mutation Analysis
Project description:The antibiotic fosfomycin is widely recognized for treatment of lower urinary tract infections caused by Escherichia coli and lately gained importance as a therapeutic option to combat multidrug resistant bacteria. Still, resistance to fosfomycin frequently develops through mutations reducing its uptake. Whereas the inner membrane transport of fosfomycin has been extensively studied in E. coli, its outer membrane (OM) transport remains insufficiently understood. While evaluating minimal inhibitory concentrations in OM porin-deficient mutants, we observed that the E. coli ΔompCΔompF strain is five times more resistant to fosfomycin than the wild type and the respective single mutants. Continuous monitoring of cell lysis of porin-deficient strains in response to fosfomycin additionally indicated the relevance of LamB. Furthermore, the physiological relevance of OmpF, OmpC and LamB for fosfomycin uptake was confirmed by electrophysiological and transcriptional analysis. This study expands the knowledge of how fosfomycin crosses the OM of E. coli.
2024-01-24 | GSE236554 | GEO
Project description:Genomic Analysis of Multidrug-Resistant Escherichia coli