Project description:Whey protein isolate (WPI)-based cast films are very brittle, due to several chain interactions caused by a large amount of different functional groups. In order to overcome film brittleness, plasticizers, like glycerol, are commonly used. As a result of adding plasticizers, the free volume between the polymer chains increases, leading to higher permeability values. The objective of this study was to investigate the effect of partially substituting glycerol by hydrolysed whey protein isolate (h-WPI) in WPI-based cast films on their mechanical, optical and barrier properties. As recently published by the author, it is proven that increasing the h-WPI content in WPI-based films at constant glycerol concentrations significantly increases film flexibility, while maintaining the barrier properties. The present study considered these facts in order to increase the barrier performance, while maintaining film flexibility. Therefore glycerol was partially replaced by h-WPI in WPI-based cast films. The results clearly indicate that partially replacing glycerol by h-WPI reduces the oxygen permeability and the water vapor transmission rate, while the mechanical properties did not change significantly. Thus, film flexibility was maintained, even though the plasticizer concentration was decreased.
Project description:Chromatin replication requires tight coordination of nucleosome assembly machinery with DNA replication machinery. While significant progress has been made in characterizing histone chaperones in this process, the mechanism of whereby nucleosome assembly couples with DNA replication remains largely unknown. Here we show that replication protein A (RPA), a single-stranded DNA (ssDNA) binding protein that is essential for DNA replication provides a binding platform for H3-H4 deposition by histone chaperons and is required for nucleosome formation on nascent chromatin. RPA binds free histone H3-H4 but not nucleosomal histones, and a RPA coated ssDNA stimulates assembly of H3-H4 onto double strand DNA in vitro. RPA mutant with reduced H3-H4 binding exhibits synthetic genetic interaction with mutations at key factors involved in replication-coupled (RC) nucleosome assembly, and are defective in assembly of replicating DNA into nucleosomes in cells. These results reveal a novel function for RPA in nucleosome assembly and a mechanism whereby nucleosome assembly is coordinated with DNA replication.