Project description:BackgroundTicks of the group Rhipicephalus sanguineus (sensu lato) are distributed worldwide and are major pathogen vectors of both dogs and humans. Previous phylogenetic reconstructions have suggested the existence of two main lineages within this group, "Tropical" and "Temperate". Symbiotic interactions contribute to vector development, survival, reproduction and competence. The diversity of microbial communities associated with different populations of R. sanguineus (s.l.) remains poorly characterized, however, this knowledge will aid in future studies of hosts-microbiota-pathogen interactions. To gain insight into the bacterial communities associated with R. sanguineus (s.l.) ticks, 40 specimens from France, Senegal and Arizona were analyzed by high-throughput 16S amplicon sequencing. All tick specimens were taxonomically classified using the mitochondrial 12S rDNA gene, which provides sufficient phylogenetic resolution to discriminate different lineages of R. sanguineus.ResultsRhipicephalus sanguineus (s.l.) samples from Senegal belonged to the "Tropical" lineage, samples from France belonged to the "Temperate" lineage, whereas both lineages were identified in samples from Arizona. Regardless of origin, each bacterial microbiota was dominated by three genera: Coxiella, Rickettsia and Bacillus. Rickettsia and Coxiella were the two main genera found in females whereas males had a higher proportion of Bacillus. Significant differences of relative abundances were evidenced between specimens from different geographical origins.ConclusionsThis study highlights differences in the microbiota composition within R. sanguineus (s.l.) specimens from different genotypes, genders and geographical origins. This knowledge will help in future studies of the symbiotic interactions, biology and vector competence of the R. sanguineus (s.l.) complex.
Project description:Rhipicephalus sanguineus s.l. (Latreille, 1806) can establish populations in residences and may lead to severe domestic and peridomestic infestations. Detection in the early infestation stage is challenging because of their small body size and the lack of visibility when ticks stay in sheltered refugia. The residents may believe that the infestation has been eliminated when no ticks are observed until ticks reappear when seeking hosts. Thus, it is necessary to improve our understanding of tick phenology to achieve more effective infestation management. In this study, the relationships between environmental conditions and tick development were explored in laboratory and using linear and nonlinear models. Three R. sanguineus s.l. strains, from one colony of the temperate lineage and two of the tropical lineage, were evaluated for the development of all life stages and conversion efficiency index (CEI) under five temperatures and four relative humidities (RHs). The development times differed between the three tick strains across stages and were primarily dependent on temperature. The CEIs had little variance explained by temperature, RH, or strains. Compared with the linear and exponential models with temperature as the only variable, the Brière-1 model was the best approximating model for most of the developmental rates. The developmental temperature thresholds for R. sanguineus s.l. development estimated by the Brière-1 model varied inconsistently across strains and life stages. We developed a more predictive relationship between environmental factors and R. sanguineus s.l. development, which can be utilized to predict tick development using temperature and develop appropriate control strategies.
Project description:BackgroundRhipicephalus sanguineus sensu lato (s.l.) is the most widely distributed ixodid tick and is a vector of major canine and human pathogens. High-throughput technologies have revealed that individual ticks carry a high diversity of pathogens, including bacteria, protozoa and viruses. Currently, it is accepted that co-infections (multiple pathogen species within an individual) are very common in ticks and influence pathogen acquisition and transmission as well as host infection risk. However, little is known on the impact of the genetic diversity of pathogens on the incidence of co-infections. Herein, we studied the frequency of co-infections in R. sanguineus (s.l.) and their association with the genetic diversity of Ehrlichia canis.MethodsRhipicephalus sanguineus (s.l.) female ticks (n = 235) were collected from healthy farm dogs in three districts of Pakistan. Microfluidic real-time PCR, a powerful nanotechnology for high-throughput molecular detection of pathogens, was used to test the presence of 25 bacterial and seven parasitic species in individual ticks. The genetic diversity of E. canis was evaluated by characterizing the trp36 gene.ResultsA total of 204 ticks were infected with at least one pathogen and 109 co-infected with two (80%) or three (20%) pathogens. Rickettsia massiliae (human pathogen) and E. canis (zoonotic dog pathogen) were the most common pathogens co-infecting (30.4%) ticks. Furthermore, all identified co-infections included R. massiliae and/or E. canis. Multiple correspondence analysis (MCA) revealed that single infections did not show clear regional association whereas some co-infections were restricted to certain geographical regions. The sequence analysis of trp36 in representative samples allowed the identification of three E. canis strains with low genetic diversity, and the strain found in Muzaffargarh district appeared to be more adapted to co-infection with R. massiliae.ConclusionsRhipicephalus sanguineus (s.l.) harbors multiple co-infections with human and dog pathogens of zoonotic potential. Findings of this study suggest that genetic diversity of E. canis may favor co-infections with different pathogens.
Project description:Tick-borne viruses and bacteria that can cause diseases of animals and humans have high impact and are of concern as significant threats to human health worldwide. In this research, we screened microorganisms related to those pathogens in ticks from dogs, a cat, and a cow. The techniques used were PCR, DNA sequencing and phylogenetic analysis to detect and classify the microorganisms [Flavivirus, severe fever with thrombocytopenia syndrome virus (SFTSV), Phlebovirus, Coronavirus, Canine Parvovirus, eubacteria, Coxiella and Rickettsia]. A novel virus named Phlebovirus-like-AYUT and Stenotrophomonas maltophilia bacteria were found in one individual tick (Rhipicephalus sanguineus s.l.) from a dog. All tick samples were negative for Rickettsia, while 9/21 (42.9 %) were positive for Coxiella bacteria. The novel virus "Phlebovirus-like-AYUT" (the name derives from Phra Nakhon Si Ayutthaya Province in Thailand) was resolved by phylogenetic analysis of the partial L segment by maximum likelihood (ML) method using MEGA X. The phylogenetic tree also indicated that the virus was related to Phlebovirus in brown dog ticks reported in Trinidad and Tobago. In contrast, Phlebovirus-like-AYUT was in a distinct clade from Lihan tick Phlebovirus-Thailand (LTPV), which was previously found in cow ticks, Rhipicephalus microplus, in Nan Province, Thailand. This study reports the Stenotrophomonas maltophilia bacterium with a novel Phlebovirus-like-AYUT in a brown dog tick. The roles of this bacterium in a virus-positive tick or in viral transmission from animal host requires further investigation.
Project description:BackgroundTick-borne rickettsial pathogens are emerging worldwide and pose an increased health risk to both humans and animals. A plethora of rickettsial species has been identified in ticks recovered from human and animal patients. However, the detection of rickettsial DNA in ticks does not necessarily mean that these ticks can act as vectors for these pathogens. Here, we used artificial feeding of ticks to confirm transmission of Rickettsia massiliae and Rickettsia raoultii by Rhipicephalus sanguineus (sensu lato) and Dermacentor reticulatus ticks, respectively. The speed of transmission was also determined.MethodsAn artificial feeding system based on silicone membranes were used to feed adult R. sanguineus (s.l.) and D. reticulatus ticks. Blood samples from in vitro feeding units were analysed for the presence of rickettsial DNA using PCR and reverse line blot hybridisation.ResultsThe attachment rate of R. sanguineus (s.l.) ticks were 40.4% at 8 h post-application, increasing to 70.2% at 72 h. Rickettsia massiliae was detected in blood samples collected 8 h after the R. sanguineus (s.l.) ticks were placed into the in vitro feeding units. D. reticulatus ticks were pre-fed on sheep and subsequently transferred to the in vitro feeding system. The attachment rate was 29.1 % at 24 h post-application, increasing to 43.6 % at 96 h. Rickettsia raoultii was detected in blood collected 24 h after D. reticulatus was placed into the feeding units.ConclusionsRhipicephalus sanguineus (s.l.) and D. reticulatus ticks are vectors of R. massiliae and R. raoultii, respectively. The transmission of R. massiliae as early as 8 h after tick attachment emphasises the importance of removing ticks as soon as possible to minimise transmission. This study highlights the relevance of in vitro feeding systems to provide insight into the vectorial capacity of ticks and the dynamics of tick-borne pathogen transmission.
Project description:Background: While the luminal microbiome composition in the human cervicovaginal tract has been defined, the presence and impact of tissue-adherent ectocervical microbiota remain incompletely understood. Studies of luminal and tissue-associated bacteria in the gastrointestinal tract suggest that they may have distinct roles in health and disease. Here, we performed a multi-omics characterization of paired luminal and tissue samples collected from a clinically well-characterized cohort of Kenyan women. Results: We identified a tissue-adherent bacterial microbiome, with a higher alpha diversity than the luminal microbiome, in which dominant genera overall included Gardnerella and Lactobacillus, followed by Prevotella, Atopobium, and Sneathia. About half of the L. iners dominated luminal samples had a corresponding Gardnerella dominated tissue microbiome. Broadly, the tissue-adherent microbiome was associated with fewer differentially expressed host genes than the luminal microbiome. Gene set enrichment analysis revealed that L. crispatus-dominated tissue-adherent communities were associated with protein translation and antimicrobial activity, whereas a highly diverse microbiome was associated with epithelial remodeling and pro-inflammatory pathways. Communities dominated by L. iners and Gardnerella were associated with low host transcriptional activity. Tissue-adherent microbiomes dominated by Lactobacillus and Gardnerella correlated with host protein profiles associated with epithelial barrier stability, and with a more pro-inflammatory profile for the Gardnerella-dominated microbiome group. Tissue samples with a highly diverse composition had a protein profile representing cell proliferation and pro-inflammatory activity. Conclusion: We identified ectocervical tissue-adherent bacterial communities in all study participants. These communities were distinct from cervicovaginal luminal microbiota in a significant proportion of individuals. This difference could possibly explain that L. iners dominant luminal communities have a high probability of transitioning to high diverse bacterial communities including high abundance of Gardnerella. By performing integrative multi-omics analyses we further revealed that bacterial communities at both sites correlated with distinct host gene expression and protein levels. The tissue-adherent bacterial community is similar to vaginal biofilms that significantly impact women’s reproductive and sexual health.